
On Performance Tuning of Serverless IoT

Applications

JAIME DANTAS

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

GRADUATE PROGRAM IN ELECTRICAL AND

COMPUTER ENGINEERING

YORK UNIVERSITY

TORONTO, ONTARIO, CANADA

APRIL 2022

© JAIME DANTAS, 2022

Abstract

Cloud computing has become a predominant IT operation platform in the past decade.

Small and large companies have been migrating their workloads to the cloud, and

serverless architectures, such as container and Function as a Service (FaaS), are

among the popular choices for cluster software deployments. Within this context,

autoscaling, the ability to dynamically adapt the cluster capacity based on the cur-

rent demand is pivotal for maintaining Quality of Service (QoS) and optimizing the

cost in the presence of workload fluctuations. The first contribution of this thesis is a

novel autoscaling solution that uses burstable instances along with regular instances

to handle the queueing arising in traffic and flash crowds. In a second contribution, we

evaluate different types of deployments for FaaS, and present three recommendations

that developers can consider when deploying their workloads on the public cloud.

Finally, we present a resource-aware dynamic load balancer component for edge com-

puting platforms using one of the most fast-growing IoT services in the industry. The

contributions are tested and validated on public clouds.

ii

Preface

The research presented in this thesis is the original work of Jaime Dantas, and it has

been conducted in collaboration between the Performant and Available Computing

Systems (PACS) Lab led by Dr. Hamzeh Khazaei, and the NSERC CREATE Pro-

gram in Dependable Internet of Things Applications (DITA) Lab led by Dr. Marin

Litoiu. This thesis is organized in paper format following the guidelines for paper-

based theses. Parts of this report have been accepted to the peer-reviewed publication

listed below.

• Dantas, J., Khazaei, H., & Litoiu, M. (2021). BIAS Autoscaler: Leverag-

ing Burstable Instances for Cost-Effective Autoscaling on Cloud Systems. In

Proceedings of the Seventh International Workshop on Serverless Computing

(WoSC7) 2021 (pp. 9-16). DOI: https://doi.org/10.1145/3493651.3493667

Parts of this report are still undergoing review by the following venues:

• Dantas, J., Khazaei, H., & Litoiu, M. (2022). Application Deployment Strate-

gies for Reducing the Cold Start Delay of AWS Lambda. In 2022 IEEE Inter-

national Conference on Cloud Computing (CLOUD). (submitted)

• Dantas, J., Khazaei, H., & Litoiu, M. (2022). GreenLAC: Resource-Aware

Dynamic Load Balancer for Serverless Edge Computing Platforms with AWS

Greengrass. In 2022 IEEE International Conference on Edge Computing (EDGE).

(submitted)

iii

https://doi.org/10.1145/3493651.3493667

Acknowledgments

Firstly, I would like to express my deepest gratitude to my supervisors, Dr. Hamzeh

Khazaei and Dr. Marin Litoiu, for providing support and guidance throughout my

graduate studies. They have always been present and have provided valuable insights

and feedback throughout my research. I could not have accomplished my objectives

without their support.

Thanks to all my friends and colleagues in the Performant and Available Comput-

ing Systems (PACS) Lab who helped me throughout my studies. I would particularly

like to thank Dr. Nima Mahmoudi and Changyuan Lin for their assistance and guid-

ance with my research.

My sincere thanks also go to Dr. Manos Papagelis for his inspirational lectures

and guidance.

Finally, I would like to thank my parents for their support and encouragement

throughout my life.

iv

Table of Contents

Abstract ii

Preface iii

Acknowledgments iv

List of Tables viii

List of Figures x

1 Introduction and Background 1

1.1 Cloud Computing . 1

1.2 Serverless Computing . 2

1.3 Edge Computing . 3

1.4 Motivation and Objectives . 4

1.5 Thesis Outline . 5

2 BIAS Autoscaler: Leveraging Burstable Instances for Cost-Effective

Autoscaling on Cloud Systems 6

2.1 Introduction . 7

2.2 Background . 9

2.2.1 Burstable Instances . 9

2.2.2 Google Cloud Platform . 10

2.2.3 Workload . 11

v

2.2.4 Benchmark Test . 11

2.3 BIAS Autoscaler Design . 11

2.3.1 The Architecture of BIAS Autoscaler 12

2.3.2 Scaling Policy . 15

2.4 Evaluation . 16

2.4.1 Transient Queueing . 17

2.4.2 Flash Crowd . 20

2.5 Related Work . 26

2.6 Conclusion . 27

3 Application Deployment Strategies for Reducing the Cold Start De-

lay of AWS Lambda 29

3.1 Introduction . 30

3.2 Methodology . 33

3.2.1 Language Runtimes and Libraries Used 33

3.2.2 Function Deployment Configuration 34

3.2.3 Function Response Time Measurement 35

3.2.4 Function Workloads Used . 35

3.3 Experimental Evaluation . 38

3.3.1 Experimental Setup and Data Collection 39

3.3.2 Results and Interpretations 40

3.4 Related Work . 53

3.5 Conclusion . 55

4 GreenLAC: Resource-Aware Dynamic Load Balancer for Serverless

Edge Computing Platforms with AWS Greengrass 57

4.1 Introduction . 58

4.2 GreenLAC . 59

4.2.1 System Architecture . 59

vi

4.2.2 Load Balancing Policies . 64

4.3 Experimental Evaluation . 64

4.3.1 Single Edge Deployment . 65

4.3.2 IoT Deployment . 68

4.4 Related Work . 71

4.5 Conclusion . 73

5 Conclusion and Future Work 74

5.1 Conclusion . 74

5.2 Contributions . 75

5.3 Future Work . 75

Bibliography 77

vii

List of Tables

2.1 Comparison of regular and burstable instances in terms of cost saving. 10

2.2 Results of performance tests for transient queueing. 21

3.1 Serverless applications. 37

viii

List of Figures

1.1 Cloud computing. 2

1.2 Edge computing. 4

2.1 Cluster architecture managed by BIAS Autoscaler on GCP. 12

2.2 BIAS Autoscaler architecture. 14

2.3 Results for the transient queueing experiment with burstable and reg-

ular instances. 19

2.4 Results for the transient queueing experiment with regular instances

only. 22

2.5 Results for the transient queueing experiment with the rule-based GCP

autoscaler set to 50% using regular instances only. 23

2.6 Results for the transient queueing experiment with burstable instances

only. 24

2.7 Results for the flash crowd experiment with burstable and regular in-

stances. 25

3.1 AWS Lambda lifecycle (adapted from [44]). 34

3.2 Architecture built on AWS. 35

3.3 Execution time for the Image Classifier 230. 40

3.4 ZIP package size of all Python serverless applications. 41

3.5 Initialization time improvement of the container-based deployment over

the ZIP deployment of the Python functions. 42

ix

3.6 Initialization time improvement of the container-based deployment over

the ZIP deployment of the Node.js functions. 45

3.7 Initialization time improvement of the container-based deployment over

the ZIP deployment of the Java functions. 46

3.8 Initialization time of the Image Classifier 230 under different memory

configurations. 47

3.9 CDF of the Image Classifier 230 initialization time. 48

3.10 Model size impact in the initialization time of the ZIP deployment

(left) and container-based deployment (right). 50

3.11 Factorial function under different language runtimes and 128MB mem-

ory configuration. 52

4.1 Deployment of the GreenLAC component on AWS Greengrass. 60

4.2 Deployment of the GreenLAC component on two edge nodes. 62

4.3 Architecture of the GreenLAC component. 63

4.4 Experimental results for the single edge deployment. 67

4.5 Request distribution for the single edge deployment. 68

4.6 Experimental results for the IoT deployment. 70

4.7 Request distribution for the IoT deployment. 71

x

Abbreviations & Acronyms

API Application Programming Interface.

AWS Amazon Web Services.

CPU Central Processing Unit.

EC2 Amazon Elastic Compute Cloud.

ECR Amazon Elastic Container Registry.

ECS Amazon Elastic Container Service.

GCP Google Cloud Platform.

HTTP Hypertext Transfer Protocol.

IoT Internet of Things.

JPEG Joint Photographic Experts Group.

MQTT Message Queue Telemetry Transport.

OS Operating System.

xi

Chapter 1

Introduction and Background

1.1 Cloud Computing

Over the past decade, cloud computing has been consolidated as the main architec-

tural model for building applications and services. This rapid growth in adoption is a

direct consequence of improvements regarding cost, scale, performance and security

that cloud systems often offer. This is because cloud computing providers eliminate

the initial capital investment companies would usually spend when building their

own on-premise data centers. In addition, the ability to dynamically adapt the ser-

vice capacity based on the current demand is pivotal for many businesses that may

experience exponential growth on their service’s demand. Autoscaling cloud resources

can not only reduce the overall cost for their customers, but also preserve the quality

of their services. Furthermore, public cloud providers often offer better performance

and security compared to on-premise servers since they are regularly upgraded to the

latest generation of fast and efficient computing hardware.

Cloud computing models can be classified into three categories: public, private,

and hybrid. Large corporations usually have services on all three layers of cloud

computing. Small companies, on the other hand, often rely on public cloud providers

for deploying their services. However, hybrid clouds are the most popular model

design, accounting for 42% of the deployments in 2020 [1].

Most cloud computing services fall into four broad categories: IaaS, PaaS, FaaS,

1

and SaaS [2]. The first concept of cloud computing was introduced with the Infras-

tructure as a Service (IaaS) model. On this model, companies rent infrastructure,

servers, virtual machines (VMs), and storage from a public cloud provider. Then,

the Platform as a Service (PaaS) model was introduced right after the popularity of

containers and microservices. In this new paradigm, developers were able to deploy

web or mobile apps without worrying about managing the underlying infrastructure

of servers or storage. Some services that were once part of the PaaS model evolved to

create a new category of cloud computing named serverless computing. Function as a

Service (FaaS) and serverless services are often referred to as technologies that enable

programmers to focus only on building app functionality with almost no infrastruc-

ture managing required. Some of the most popular cloud services of each category

are shown in figure 1.1.

IaaS

PaaS

FaaS

EC2Compute

Engine

ECSKubernetes

Engine

LambdaCloud
Function

Development Spend and Business Logic focus

M
an

ag
em

en
t a

nd
 O

pe
ra

tio
na

l O
ve

rh
ea

d

Figure 1.1: Cloud computing.

1.2 Serverless Computing

Serverless computing, also known as FaaS, has gained a lot of popularity in the last

five years. It allows developers to build applications faster by transferring the respon-

2

sibility of managing the cloud infrastructure to the cloud provider. This means that

the cloud provider is in charge of automatically allocating resources and managing

the infrastructure required to run the code. By taking this approach, companies can

focus on the core business logic while the cloud provider manages the scalability and

security of their services. Cloud Functions are functions offered by Google Cloud

where customers can deploy and run their code with zero server management [3].

Azure also provides their FaaS service named Azure Functions[4], and AWS has the

AWS Lambda functions [5].

1.3 Edge Computing

Edge computing is a distributed computing paradigm that brings computational re-

sources closer to the sources of data. This recently introduced model enables low

latency applications to access computing and storage services deployed on-premises.

Due to privacy and security reasons, companies may opt to process their data locally,

and this growing necessity has driven tech companies to launch services dedicated

to edge computing. One of the main concerns nowadays regarding distributed data

across multiple nodes connected through the Internet is the risk of data leaks or

cyber-attacks. Additionally, the increase of IoT devices at the edge of the cloud is

producing a massive amount of data that needs to be processed and analyzed in

real-time in most cases.

A recent survey conduction in 2022 has indicated that 83% of organizations have

improved their efficiency by introducing IoT technology [6]. Although most of the

major cloud providers offer some services at the edge, only AWS and Microsoft Azure

allow their customers to execute serverless functions on the edge. With the AWS

Greengrass and Azure IoT Edge, IoT applications and sensors can send their data to

be processed locally at the edge using serverless functions. However, scaling serverless

applications at the edge remains an open issue to this day. This is because both AWS

Greengrass and Azure IoT Edge are not able to scale serverless services in the core

3

dynamically. Figure 1.2 shows some of the edge and core services offered by AWS,

Google Cloud and Microsoft Azure.

AWS GreengrassAzure IoT

Edge Nodes

IoT Devices

Cloud IoT Core

Core Cloud
Amazon EC2VMCompute Engine

On-Premise

Figure 1.2: Edge computing.

1.4 Motivation and Objectives

Performance and cost optimization are pivotal for distributed systems. Serverless

computing and edge computing are important architectures for the deployment of

complex systems in the cloud. Hence, creating efficient scaling strategies for microser-

vices, mitigating performance issues on serverless platforms and designing modern

architectures for edge computing are of utmost importance for today’s modern appli-

cations. Therefore, we address these challenges by proposing tools and an in-depth

analysis of distributed systems. Specifically, in this thesis, we aim to:

4

• Create the first open-source autoscaling solution for Google Cloud Compute

Engines that uses burstable instances and provide extensive documentation to

allow developers to extend this work to other cloud services, especially Google

Kubernetes Engine.

• Provide the first extensive analysis of AWS Lambda that takes into account the

ZIP and container-based deployment, the language runtime, the memory and

the package size of the function.

• Build the first AWS Greengrass component that performs dynamic load balanc-

ing of serverless applications across the core and edge nodes.

1.5 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 presents the design and ex-

perimental evaluation of BIAS Autoscaler, which is an autoscaling for cloud systems

that leverages burstable instances. In Chapter 3, we propose guidelines to applica-

tion developers for reducing the cold start delay of serverless functions. In Chapter

4, we present the architecture and performance evaluation of our dynamic load bal-

ancer for serverless edge computing platforms, GreenLAC. Finally, Chapter 5 lists

our contributions and elaborates on the possible future directions for this research.

5

Chapter 2

BIAS Autoscaler: Leveraging
Burstable Instances for
Cost-Effective Autoscaling on
Cloud Systems

Burstable instances have recently been introduced by cloud providers as a cost-

efficient alternative to customers that do not require powerful machines for running

their workloads. Unlike conventional instances, the CPU capacity of burstable in-

stances is rate limited, but they can be boosted to their full capacity for small pe-

riods when needed. Currently, the majority of cloud providers offer this option as

a cheaper solution for their clients. However, little research has been done on the

practical usage of these CPU-limited instances. In this chapter, we present a novel

autoscaling solution that uses burstable instances along with regular instances to

handle the queueing arising in traffic and flash crowds. We design BIAS Autoscaler,

a state-of-the-art framework that leverages burstable and regular instances for cost-

efficient autoscaling and evaluate it on the Google Cloud Platform. We apply our

framework to a real-world microservice workload, and conduct extensive experimen-

tal evaluations using Google Compute Engines. Experimental results show that BIAS

Autoscaler can reduce the overall cost up to 25% and increase resource efficiency by

42% while maintaining the same service quality observed when using conventional

instances only.

6

2.1 Introduction

Elasticity is one of the most important concepts of cloud computing. The ability

to dynamically adapt the cluster capacity based on the current demand is pivotal

for maintaining Quality of Service (QoS) and optimizing the cost. Autoscaling the

resources can not only reduce the overall cost for the customer, but also preserve the

Service-level Agreements (SLAs) and Service-level Objectives (SLOs) of the services.

This is because most of the workloads face unpredicted variations in traffic during

their usage. Sometimes, these spikes in usage can cause interference in the QoS

metrics, leading to a negative impact on both the cloud providers and the customers.

Many autoscaling solutions try to mitigate these problems by provisioning addi-

tional computational resources to handle unpredicted spikes on their workloads. This

is commonly known as overprovisioning the number of resources above the minimum

required to handle sudden variation in traffic. The downside of this approach, how-

ever, is because this extra capacity is often not entirely used during normal demand,

which in turn, leads to waste of resources and consequently, increasing the cost. To

avoid wasting computational resources, cloud providers such as Amazon Web Service

(AWS), Google Cloud Platform (GCP) and Microsoft Azure introduced burstable

instances. We believe that this type of instance is the key to designing cost-efficient

solutions on the public cloud, especially for small clusters.

Burstable instances are virtual machines whose CPU capacity is limited to a prede-

fined threshold. Even though they are meant to operate under their operational CPU

threshold, the CPU capacity can be boosted to the full standard capacity for small

periods. Each cloud provider implements its own proprietary system to manage these

instances, and they are usually based on tokens for CPU credits. AWS, for example,

controls the frequency by which their burstable instances can operate above the CPU

threshold by using a token-based system. Each minute the instance operates below

its CPU threshold, the customer receives a token that can then be spent to boost

7

these instances to CPU values above its threshold for one minute. Similarly, Microsoft

Azure implements a token-like control system for their burstable virtual machines.

When we compare the cost of burstable instances with regular ones, we can see huge

differences in the overall savings one could have. For instance, the Google Compute

Engine N1 shared-core g1-small instance (with 1 vCPU at 50% sustained rate and

1.7 GB of memory) cost 52% less than the N1 standard 1 instance (with 1 vCPU

with 3.75 GB of memory). This difference can be as high as 10 times depending on

the type of instance and the cloud provider.

We introduce the Burstable Instance Autoscaler (BIAS), an application autoscaler

that combines different instance types for scaling virtual machines in the public cloud.

BIAS Autoscaler was evaluated on GCP, and it uses the already existing infrastructure

and services of GCP to add and remove resources as needed as well as distribute the

traffic among the different types of instances. We use the Square-Root Staffing Rule

to calculate the number of required servers on the fly, and evaluate our framework on

a microservice workload. Our work presents two main contributions:

• We use a well-known technique to create a new solution for reducing the cost

and increasing the efficiency of autoscaling systems by leveraging burstable in-

stances in combination with conventional ones. We implement and evaluate our

solution in our prototype BIAS Autoscaler, which is open-source on GitHub1,

and validate our technique under two distinct scenarios: transient queueing

arising in traffic, and flash crowds.

• We demonstrate how our framework can be extended to other cloud providers,

and how it can be used to manage other serverless services based on containers

such as Kubernetes. We also explain how to implement customized scaling

policies on BIAS Autoscaler.

1https://github.com/BIAS-Cloud/BIAS-Autoscaler

8

https://github.com/BIAS-Cloud/BIAS-Autoscaler

2.2 Background

In this section, we present the main features of burstable instances and GCP, and

discuss how we validate our proposed framework, BIAS Autoscaler.

2.2.1 Burstable Instances

Burstable instances are machine types that limit their CPU utilization at a fixed rate.

Most cloud providers such as AWS [7], GCP [8] and Microsoft Azure [9] offer this

type of instance as an affordable option for workloads that usually do not require high

computational power. They usually offer these instances as a solution to maximize

the utilization of their idle resources. On GCP, for example, these instances are

implemented as shared-core virtual machines that use context-switching for sharing

a physical core between other vCPUs [8].

Studies have shown that for most cloud providers, underutilization of resources is

a present issue for most of their services. For Microsoft Azure, approximately 60%

of all virtual machines utilize less than 20% of its full capacity [10]. Similarly, the

CPU utilization of Google Compute Engine instances is as low as 35% for most of the

time [11]. To address this issue, we propose BIAS Autoscaler to maximize resource

efficiency using burstable instances.

AWS offers several types of EC2 burstable instances under the families T2, T3,

T3a, and T4g [7]. On this cloud provider, for on-demand EC2 instances, the cost

of burstable instances varies from 90% to up to 10 times less than regular instances

[12]. This figure is similar for GCP as well, reaching up to 8 times in savings for

some burstable instances [13]. Unlike AWS, though, GCP offers only two families of

burstable instances: E2 shared-core and N1 shared-core [8].

Table 2.1 shows a comparison of the savings that customers could have if they

choose burstable instances for their services in the three major cloud providers. For

this study, only instances with 1 and 2 vCPUs with memory matches were considered.

9

Table 2.1: Comparison of regular and burstable instances in terms of cost saving.

Cloud Burstable Regular vCPUs Thld. (%) Savings (%)

Azure B1MS A1 v2 1 20 43

Azure B2S A2 v2 2 40 45

AWS t2.small a1.medium 1 20 10

AWS t4g.medium a1.large 2 20 34

GCP g1-small n1-standard-1 1 50 52

GCP e2-medium e2-standard-2 2 50 50

Even though AWS advertises savings up 10 times, when we compare the cost of

burstable and regular instances with 2 vCPUs and 4 GB of memory, the savings

drops to only 10%. GCP, on the other hand, offers a highest cost-benefit ratio for

this configuration, with 50% in savings.

2.2.2 Google Cloud Platform

Google Cloud Platform (GCP) is the only public cloud provider among the major

players that offer an application and network load balancer highly tunable, making

it possible to distribute traffic based on the CPU utilization of instance groups [14].

We exploit this unique feature to control the traffic distribution among the different

instance types. Our framework, BIAS Autoscaler, is the first of its kind to rely entirely

on the existing cloud load balancer to control the traffic. The existing solutions

that are similar to our framework BurScale [15] and CEDULE [16], which are both

applied on AWS, require a customized load balancer implementation to work. This

customized load balancer often seen on autoscaler implementations can not only add

additional complexity to the cluster infrastructure, but also increase the probability

of interference in the QoS metrics of the service.

Even though BIAS Autoscaler is applied and tested on Google Compute Engines

[17], we explain how it can also be used to manage container-based services such

10

as Google Kubernetes Engine [18] with small changes on its controller module. In

addition, we demonstrate how it can be adapted to other public cloud providers such

as AWS by using a customized load balancer.

2.2.3 Workload

In order to evaluate the performance of our framework, we created the Load Microser-

vice and made it open-source on GitHub2. This microservice simulates a web-server

application with a RESTFul API with adjustable CPU load and processing time. It

is written in Kotlin, and it uses the Micronaut Framework3, which is a full-stack

framework with fast startup time. This microservice has an HTTP GET endpoint

that retrieves the data from the resource ID sent by the client in the JavaScript Ob-

ject Notation (JSON) format. We set this API to simulate a heavy CPU load for

a few milliseconds on each call. The full documentation of the Load Microservice is

available on GitPages4.

2.2.4 Benchmark Test

We use the Locust5 benchmark tool for our performance tests. Locust is an open-

source, scriptable and scalable performance testing tool that allows customized use

test cases written in Python.

2.3 BIAS Autoscaler Design

In this section, we present the architecture and design of BIAS Autoscaler, and show

how it uses a combination of regular and burstable instances to reduce cost on the

public cloud. We evaluate BIAS Autoscaler on GCP, and the source code is openly

accessible on GitHub1.

2https://github.com/BIAS-Cloud/Load-Microservice
3https://micronaut.io
4https://bias-cloud.github.io/Load-Microservice
5https://locust.io

11

https://github.com/BIAS-Cloud/Load-Microservice
https://micronaut.io
https://bias-cloud.github.io/Load-Microservice
https://locust.io

Compute
Engines

Load
Balancer

Burstable

Regular

Regular

Cloud
SDK

Scales
 OUT

IN
Instances

Adjusts
Weights

CPU
Burstable

Internet

API

Figure 2.1: Cluster architecture managed by BIAS Autoscaler on GCP.

2.3.1 The Architecture of BIAS Autoscaler

BIAS Autoscaler is a ready-to-use autoscaler with little to no configuration required

for cloud systems. Even though it was primarily evaluated and developed on GCP,

it can be extended to other public cloud providers such as AWS and Azure. To the

best of our knowledge, BIAS Autoscaler is the first open-source autoscaler fully tested

and validated on GCP that leverages burstable instances for scaling Google Compute

Engine instances. BIAS Autoscaler is also the first autoscaler to use the Google Load

Balancer to dynamically change the traffic distribution among the instances. It uses

the existing GCP services to manage and monitor the cluster, and it was developed

using the Java programming language in combination with the Micronaut Framework.

12

A full step-by-step guide and documentation is provided on GitPages6. We used the

Google Cloud Java API and SDK for scaling and controlling the cluster, and the

Google Cloud Stackdriver Monitoring Client for monitoring the necessary metrics.

BIAS Autoscaler can be deployed either on a Google Compute Engine instance or

run as a container on Google Kubernetes Engine. It is a reactive autoscaler that uses

the Google Load Balancer to adjust the CPU utilization of the burstable instances

based on traffic distribution. Figure 2.1 shows how BIAS Autoscaler is used to scale

out/in the resources on GCP. Its architecture is divided into three distinct modules:

monitor, scaling and controller. The internal architecture of BIAS Autoscaler is shown

in figure 2.2.

CPU Utilization of Burstable Instances

BIAS Autoscaler works by maxing out the CPU utilization of the burstable instance

only when the cluster is scaling out new resources. It sets the CPU threshold of the

burstable instances to its default value (T) as soon as the new resources are added

and are ready to be used in the cluster. This CPU threshold is refereed as weights

(wb) on BIAS Autoscaler. By doing this, the full capacity of the burstable instances is

used when the cluster requires additional computational power to process the current

demand. On this strategy, BIAS Autoscaler will boost the burstable instances only

when necessary.

Monitoring: The monitoring component is in charge of acquiring metrics from

the load balancer and the instances. Since we validated BIAS Autoscaler on GCP,

the Google Load Balancer and the Google Compute Engines were used. It fetches

metrics from these cloud services through the Google Cloud Monitoring service.

Scaling: This component is where the scaling algorithm is implemented. It

reads the metrics provided by the monitor component, and calculates the number of

burstable and regular instances of the current demand. This information is then fed

6https://bias-cloud.github.io/BIAS-Autoscaler

13

https://bias-cloud.github.io/BIAS-Autoscaler

BIAS Autoscaler

Google Cloud Platform

Google Cloud Engine Instances

Burstable
Instances

Regular
Instances

Google Cloud

Load Balancer

Google Cloud

Monitoring

Controller

Load Balacing

Configuration

Allocation

Request Metrics

Metrics

 Monitor

Scaling
of instances

Metrics

Figure 2.2: BIAS Autoscaler architecture.

to the controller module so it can perform the scaling of the cluster. Currently, BIAS

Autoscaler supports only the Square-Root Staffing Rule (SR Rule) scaling policy, but

any policy can be applied.

Controller: This module is the core of BIAS Autoscaler. The number of calcu-

lated burstable (kb c) and regular (kr c) instances is provided to this component, and

it outputs the necessary changes to the cluster. Once again, since we validated BIAS

Autoscaler on GCP, it uses the Google Cloud Java API to control the load balancer

traffic distribution among the instance groups, and scales out/in the Google Compute

14

Engine instances. The controller module is also responsible for updating the weights

of the CPU threshold (wb) of the burstable instances. Whenever it scales out the

regular or burstable instances, it sets wb to 100% to burst the burstable instances to

their maximum capacity while the new resources are being provisioned in the cluster.

This helps to reduce the CPU load of the regular instances while the new resources

are added to the cluster. As soon as the calculated number of instances (kb c, kr c)

are identical to the current number of instances (kb, kr), BIAS Autoscaler sets wb to

its original threshold value, T .

Although BIAS Autoscaler was primarily designed and validated on GCP, it can

be extended to AWS and Azure as well. In order to control EC2 instances on AWS,

though, a customized load balancer is required since the AWS Elastic Load Balancer

does not support dynamic adjustments in the traffic distribution among different in-

stance groups. The same approach should be applied when using BIAS Autoscaler to

control Azure Virtual Machines on Microsoft Azure. A generic interface is provided

so users can implement a class to communicate with their customized load balanced

using RESTful/gRCP APIs. Additionally, BIAS Autoscaler can be extended to man-

age services based on containers on GCP and other cloud providers as well. For

GCP, a generic interface is provided to implement procedures to control the Google

Kubernetes Engine using the Google Cloud SDK.

2.3.2 Scaling Policy

Both predictive and reactive scaling algorithms can be applied on BIAS Autoscaler.

However, we chose a reactive approach to scale our resources. Our reactive strategy

assumes that the future demand resembles the current state. We use the well-accepted

Square-Root Staffing Rule (SR Rule) as our scaling strategy for BIAS Autoscaler.

Many works [15], [19], [20] have been developed around autoscaling cloud resources

based on the SR Rule in recent years. Since the Google Cloud Load Balancer allows

the distribution of the traffic based on the CPU utilization of instance groups, we

15

leverage this feature to control the utilization level of the burstable instances. Based

on the previous development done on [21], we consider our system as an M/M/k

queueing system.

Theorem 1 (Square-Root Staffing Rule [22]) Given an M/M/k queueing system with
arrival rate λ and service rate µ, and R = λ

µ
, where R is large, let k∗

α denote the least

number of servers needed to ensure that the probability of queueing P
M/M/k
Q < α.

Then k∗
α ≈ R + c

√
R where c is the solution for the equation cΦ(c)

ϕ(c)
= 1−α

α
where Φ(.)

denotes the c.d.f. of the standard Normal distribution and ϕ(.) denotes its p.d.f.

The parameter c is related to the probability of queueing, α, which determines the

mean response time of our service, E[T]. Equation 2.1 shows how we can calculate

E[T] using PQ where ρ = λ
kµ

is the system utilization [22]. We assumed the probability

of queueing (PQ) of our service as 10% for all benchmark tests we performed, but this

property can be easily changed on BIAS Autoscaler configuration file.

E[T] =
1

λ
· PQ ·

ρ

1− ρ
+

1

µ
(2.1)

Therefore, the SR Rule used to determine the number of servers k required to

handle an arrival rate λ is kc = R + c
√
R. Note that the value of R is known,

and it varies depending on the cluster configuration and workload used. We use the

approach proposed on [15] to determine the number of and regular (kr c = R) and

burstable (kb c = c
√
R) instances.

2.4 Evaluation

We conducted two different experiments to evaluate the performance of BIAS Au-

toscaler for scaling virtual machines using Compute Engines on GCP. In order to

evaluate the performance of our framework, we created the Load Microservice and

made it open-source on GitHub7. This microservice simulates a web-server applica-

tion with a RESTFul API with adjustable CPU load and processing time. The full

7https://github.com/BIAS-Cloud/Load-Microservice

16

https://github.com/BIAS-Cloud/Load-Microservice

documentation of the Load Microservice is available on GitPages8. We use the Lo-

cust9 benchmark tool for our performance tests. Locust is an open-source, scriptable

and scalable performance testing tool that allows customized use test cases written in

Python. We analyzed the performance of our autoscaler during a transient queueing

in traffic and a flash crowd scenario. For the former case, we evaluated BIAS Au-

toscaler in three distinct configurations, and then compared our performance to the

rule-based GCP autoscaler. Finally, we tested BIAS Autoscaler for handling flash

crowds and analyzed the QoS metrics and the SLOs violations for each test. All the

experiments are openly accessible on GitHub10.

2.4.1 Transient Queueing

For this experiment, we simulated a fixed increasing rate in traffic for a long period,

and we analyzed the QoS metrics and SLOs violations when running BIAS Autoscaler

with both burstable and regular instances compared to regular instances only and

burstable instances only. In addition to evaluating QoS metrics and SLOs violations,

we compare the computational power and efficiency of the burstable instances with

their equivalent regular ones.

Experimental Setup: We created a cluster on GCP with burstable and regular

on-demand instances. We used N1 shared-core g1-small instances as our burstable

instances, and N1 standard 1 as our regular ones. Both these instance types have 1

identical vCPU (Intel(R) Xeon(R) CPU @ 2.30GHz). The main difference between

them is that the burstable instances are CPU limited to 50% utilization, but they

can boost themselves up to 100% of 1 vCPU for small periods. For memory, however,

our instances differ a bit. Whereas our regular instances have 3.75 GB RAM, our

burstable ones have only 1.7 GB RAM. The CPU utilization target of the burstable

instances was set to 40%. We first perform three benchmark tests: one with BIAS

8https://bias-cloud.github.io/Load-Microservice
9https://locust.io

10https://github.com/BIAS-Cloud/Experiments

17

https://bias-cloud.github.io/Load-Microservice
https://locust.io
https://github.com/BIAS-Cloud/Experiments

Autoscaler scaling regular instances along with burstable ones, one scaling regular

instances only where kr = R+ c
√
R, and another one scaling burstable instances only

where kb = R+ c
√
R. We then compare the results of these three tests with another

performance test using the GCP autoscaler with regular instances only set to scale

out each time the CPU utilization reaches 50%.

SLOs: The SLO for the average response time was set to 150 ms with 95% of the

requests below 300 ms, and no error is allowed.

Service rate µ: We run a benchmark test to determine the service rate exper-

imentally. This test consisted of running a regular instance for 60 minutes under a

fixed arrival rate. The service rate for our evaluation tests was set to µ = 17 re-

quests/s for each regular instance. The probability of queueing PQ for all tests we

performed is 10%.

Load generation: For simulating the user traces, we created a test scenario on

Locust where the arrival rate λ increases linearly from 10 to 75 request/s in a window

of 108 minutes.

Results: We reduced the cost by 25% when replacing some conventional instances

with burstable ones. To achieve this, we compared the cost of running BIAS Au-

toscaler with regular and burstable instances (figure 2.3) against running it with

regular instances only (figure 2.4). The scaling algorithm used in both tests was the

SR Rule, and we considered c
√
R as the number of burstable instances. This scaling

strategy differs from a pure reactive scaling algorithm since more than one instance

can be added at once under the SR Rule as can be seen on figure 2.5(c) and figure

2.6(c). Another surprising finding was the outstanding performance reached when

running BIAS Autoscaler with burstable instance only. This is because this configu-

ration resulted in savings of 56% compared with regular instances only with almost

no impact in the SLOs. However, this high saving in cost may be questionable since

all burstable instances ran above their CPU threshold of 50% during the entire test

as can be seen in figure 2.6(d). Therefore, since the burstable instances on GCP are

18

Transient Queueing with Burstable and Regular Instances

0

20

40

60

80

R
e

q
u

e
s
ts

/s

(a)

0

100

200

300

R
e
s
p
o
n

s
e
 T

im
e
 (

m
s
)

(b)

Average Response Time

95th Percentile

0

2

4

6

#
 o

f
In

s
ta

n
c
e
s

(c)

Burstable Instances

Regular Instances

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

Time (s)

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(d)

Burstable Instances

Regular Instances

Figure 2.3: Results for the transient queueing experiment with burstable and regular
instances.

highly workload dependable, they may not sustain long periods running at full CPU

capacity.

This 25% cost savings can be understood better when we analyze the resource

utilization during the two test scenarios. While we maintained an average CPU usage

of our resources of approximately 45% when running with regular instances only, this

19

figure was roughly 64% when we combined burstable and regular ones (considering

we rate the CPU of the burstable instances at 50%). As a result, we increased our

resource efficiency by 42% when using a combination of these two instance types. This

demonstrates how BIAS Autoscaler can be used to not only reduce the cost, but also to

increase the overall resource efficiency. Although relying solely on burstable instances

appears to be the best cost-effective option at first glance, the black-box managing

system of GCP states that there is no guarantee it can sustain long periods running

on maximum CPU capacity. Thus, we do not advocate that cluster administrators

should replace all their conventional instances with burstable ones instead. However,

this demonstrates that burstable instances can indeed be used for replacing some

regular instances as long as their CPU load is correctly managed by the autoscaler to

avoid long runs at their maximum CPU capacity, as demonstrated in figure 2.3(d).

Even though we observed a slightly better average response time (7% only) when

using regular instances only, the SLOs were not impacted when using burstable in-

stances. The 95th percentile performance was also approximately equivalent for the

two tests. The reason for that is because the maximum 95th percentile response time

reached when running burstable and regular instances combined was less than 25%

higher than running BIAS Autoscaler with regular instances only. Despite this small

difference, both tests met the required SLOs for the 95th percentile.

Table 2.2 compiles the results of all four tests performed. Note that when we

compare side-to-side BIAS Autoscaler with the rule-based GCP autoscaler, we can

see that BIAS Autoscaler reduces the cost by approximately 18% while maintaining

roughly the same SLOs.

2.4.2 Flash Crowd

For this experiment, we simulated a flash crowd for a short period, and we ana-

lyzed the QoS metrics and SLOs violations when running BIAS Autoscaler with both

burstable and regular instances compared to regular instances only using the same

20

T
ab

le
2.
2:

R
es
u
lt
s
of

p
er
fo
rm

an
ce

te
st
s
fo
r
tr
an

si
en
t
q
u
eu
ei
n
g.

T
e
st

S
ce

n
a
ri
o

A
v
e
ra

g
e
R
e
sp

o
n
se

T
im

e
(m

s)
M

a
x
im

u
m

9
5
th

P
e
rc
e
n
ti
le

(m
s)

C
o
st

(1
0−

3
U
S
D
)

R
eg
u
la
r
in
st
an

ce
s
on

ly
11
0

21
0

49
3

R
u
le
-b
as
ed

G
C
P
au

to
sc
al
er

10
8

22
0

45
0

B
u
rs
ta
b
le

an
d
re
gu

la
r
in
st
an

ce
s

11
8

28
0

37
1

B
u
rs
ta
b
le

in
st
an

ce
s
on

ly
12
0

22
0

21
8

21

Transient Queueing with Regular Instances Only

0

20

40

60

80

R
e

q
u

e
s
ts

/s

(a)

0

100

200

300

R
e
s
p
o
n

s
e
 T

im
e
 (

m
s
)

(b)

Average Response Time

95th Percentile

0

2

4

6

8

#
 o

f
In

s
ta

n
c
e
s

(c)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

Time (s)

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(d)

Figure 2.4: Results for the transient queueing experiment with regular instances only.

configuration as for the transient queueing experiment. We performed a benchmark

test where BIAS Autoscaler runs with regular and burstable instances combined. The

key difference of this experiment is the workload used. The SLO for the average re-

sponse time was set to 300 ms with 95% of the requests below 1000 ms, and no error

is allowed.

22

Transient Queueing with GCP Autoscaler

0

20

40

60

80

R
e

q
u

e
s
ts

/s

(a)

0

100

200

300

R
e
s
p

o
n
s
e

 T
im

e
 (

m
s
)

(b)

Average Response Time

95th Percentile

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

Time (s)

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(d)

CPU Utilization (%)

Threshold

Figure 2.5: Results for the transient queueing experiment with the rule-based GCP
autoscaler set to 50% using regular instances only.

Load generation: For simulating a flash crowd, we created a test scenario on

Locust where the arrival rate λ increases from 10 request/s to three different picks

with a maximum of 85 requests/s in a window of 33 minutes in total. We run this

load against two distinct configurations of BIAS Autoscaler. The figure 2.7(a) shows

the load used for the flash crowd experiment.

23

Transient Queueing with Burstable Instances Only

0

20

40

60

80

R
e

q
u

e
s
ts

/s

(a)

0

100

200

300

R
e
s
p
o
n

s
e
 T

im
e
 (

m
s
)

(b)

Average Response Time

95th Percentile

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

Time (s)

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(d)

Figure 2.6: Results for the transient queueing experiment with burstable instances
only.

Results: The outcome of this experiment was similar to the transient queueing

benchmark test, with approximately 25% reduction in cost when replacing some con-

ventional instances with burstable ones. Even though both performance tests where

BIAS Autoscaler ran with burstable and regular instances and the one with regular

instances only met all requited SLOs, the average response time achieved by the later

24

Flash Crowd with Burstable and Regular Instances

0

20

40

60

80

100

R
e

q
u

e
s
ts

/s

(a)

0

200

400

600

800

1000

R
e
s
p
o
n

s
e
 T

im
e
 (

m
s
)

(b)

Average Response Time

95th Percentile

0

2

4

6

#
 o

f
In

s
ta

n
c
e
s

(c)

Burstable Instances

Regular Instances

0 250 500 750 1000 1250 1500 1750 2000

Time (s)

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(d)

Burstable Instances

Regular Instances

Figure 2.7: Results for the flash crowd experiment with burstable and regular in-
stances.

configuration outperformed the former one by almost 2 times. Since we did not over-

provision the cluster, the average and the 95th percentile of the response time for the

flash crowd experiment running with both burstable and regular instances was almost

double the figure seen on the transient queueing experiment. The average response

time for the flash crowd experiment when BIAS Autoscaler ran with burstable and

25

regular instances was 232 ms whereas for regular instances only was 141 ms.

Although the response time achieved when combining burstable and regular in-

stances was almost two times higher than when using regular instances only, the cost

savings should be considered when using this approach for scaling cloud resources.

Overall, using the SR Rule algorithm for scaling regular and burstable instances was

adequate for scenarios where the traffic increases at a steady and constant rate. For

this application, BIAS Autoscaler was able to maintain roughly the same SLOs as for

regular instances only at the same time the cost was reduced by 25%. However, the

same outcome was not reached when using this strategy for handling flash crowds.

For these sudden variations in traffic, a fine-granular tuning of the scaling frequency

and the number of burstable instances used should be performed to avoid impacting

the SLOs.

2.5 Related Work

Many works [16], [23], [24] have been done on the theoretical analysis of burstable

instances, and some frameworks were proposed to AWS. The framework CEDULE

developed on [16] and [24] investigates the usage of burstable instances on AWS,

and proposes an adaptive scheduling framework to optimize performance and reduce

cost on cloud providers. Even though the authors of CEDULE claimed it could

be used in any cloud provider, they only tested it on AWS. Unlike our framework,

CEDULE focuses only on token-based systems to manage burstable instances (present

on AWS and Azure) while BIAS Autoscaler addresses the practical applications of

these instances on non-token-like systems such as the one on GCP. Also, CEDULE

is not open-source, and no information about its internal architecture is provided by

its authors.

Similar to CEDULE, BurScale [15] leverages burstable instances to reduce cost and

handle flash crowds on AWS. Unlike our solution, BurScale is validated and applied

only on AWS, and it uses a customized load balancer. Even though BurScale is an

26

open-source solution, there is no information on how it could be used on a non-token-

like system such as GCP. When using BIAS Autoscaler on GCP, however, the load

balancer used is the Google Cloud Load Balancer for controlling the traffic of the

burstable instances.

The authors on [23] advocate the usage of burstable instances for workloads that

do not require large amounts of computational resources to run, and that occasionally

need to run with additional resources for small periods. They also propose the first

analytical model for burstable instances that takes into account the QoS metrics and

CPU credits of burstable instances to derive a mathematical model that maximizes

cost and resource efficiency for customers and cloud providers for IaaS (Infrastructure

as a Service) clouds. Although their framework can be used to model burstable

instances on AWS and Azure, there is no information on how these instances can be

used on GCP.

Some solutions [25], [26] were developed on the efficiency of reactive rule-based au-

toscaler on Google Compute Engine, whereas others [27], [28] proposed scaling policies

for Google Kubernetes Engine. However, no studies were found on the practical usage

of burstable instances on GCP. The analysis on [29] presents a complete overview and

comparison between burstable instances from AWS and GCP, and explains in detail

the token mechanisms used by AWS to manage these instances.

MRburst, which was developed on [30], is also a performance scheduler to control,

among other things, the CPU utilization of burstable instances in the network level

on AWS to maximize cost efficiency. However, this approach differs from ours since

we control our resource utilization on the application level performing load balancing

configuration changes.

2.6 Conclusion

Burstable instances can be the key to improving resource efficiency and reducing costs

on the public cloud. We presented BIAS Autoscaler, an autoscaler that leverages

27

burstable instances on the public cloud as the only of its kind fully validated and

integrated on the Google Cloud Platform. We applied a known scaling model to

validate our concept, and achieved promising results on both savings and resource

efficiency. By replacing some of the conventional instances with burstable instances,

BIAS Autoscaler was able to reduce the cost by 25% while maintaining the same

service SLOs compared with traditional approaches using regular instances only.

We evaluated BIAS Autoscaler under a transient queueing and a flash crowd ex-

periment, and showed its efficiency on Google Cloud Platform on a microservice

workload. The outcome of these performance experiments showed great potential

to increase resource efficiency and reduce the cost. These results demonstrated that

BIAS Autoscaler can increase resource efficiency by 42% without interfering with the

quality of the service when using burstable instances.

28

Chapter 3

Application Deployment Strategies
for Reducing the Cold Start Delay
of AWS Lambda

Serverless computing has emerged in recent years as the new computing paradigm

adopted by key players in the industry for software development. This new paradigm

has seen rapid growth in adoption due to its unique billing model and scaling char-

acteristics. Public cloud providers such as Amazon Web Services (AWS) offer several

configurations and language runtimes for their serverless functions. Although exten-

sively explored by the research community, this field still lacks current studies that

address the many challenges developers face when leveraging serverless functions for

real-world applications. One of these challenges that are often overseen by many

programmers is the cold start problem which is present in any serverless application.

For this reason, we propose the first study to characterize the underlying cold start

impacts caused by the choice of language runtime, application size, memory size and

deployment type on AWS Lambda. In this chapter, we analyze the performance of

the container-based deployment and ZIP-based deployment of AWS Lambda using a

variety of language runtimes and applications running with different function config-

urations; then we propose guidelines for developers and cloud managers to consider

when deploying/managing the workloads on the cloud.

29

3.1 Introduction

Cloud computing has become the new standard for running applications and work-

loads in the industry. Most of the companies nowadays host their services on private

or public clouds, and public cloud providers such as Amazon Web Services (AWS),

Google Cloud Platform (GCP) and Microsoft Azure (Azure) offer support to most

of the services required by complex systems and applications. Infrastructure as a

Service (IaaS), Platform as a Service (PaaS) and Service as a Service (SaaS) are the

most popular cloud computing service models used in the industry [31].

Serverless computing, often referred to as Function as a Service (FaaS), is the most

recent cloud computing paradigm that originated from the SaaS model. With this

new computing paradigm, developers deploy small pieces of code named functions and

the cloud provider is in charge of provisioning all the infrastructure and resources re-

quired to run these functions. Unlike IaaS or PaaS, where cloud admins still need to

provision their cluster, FaaS does not require resource provisioning or complex con-

figurations. The cloud provider is responsible for managing the FaaS infrastructure,

allowing customers to deploy and execute their functions in an efficient and faster

way compared to the older computing models. With FaaS, cloud providers charge

per request, not per resource used. The value of each execution varies according to

the function configuration and the region it is executed.

Most of the public cloud providers have their own FaaS platforms and services.

Cloud Functions are functions offered by GCP where customers can deploy and run

their code with zero server management [3]. Azure also provides their FaaS service

named Azure Functions[4], IBM Cloud Functions are the serverless functions offered

by IBM [32] and AWS has the AWS Lambda functions [5]. AWS is currently the

only public cloud provider to offer different deployment types for their FaaS services.

Previously, all major FaaS platforms, including AWS Lambda, supported only one

deployment type. Customers were required to upload their function source code

30

into the cloud platform either manually or by compacting the code and deploying

it automatically. However, in December 2020, AWS introduced the new deployment

type named container-based deployment for AWS Lambda[33]. Now, customers can

build their own container using the container images provided by the company. The

size limitation that was once present on all serverless platforms is now eliminated on

AWS Lambda since they allow the container to be as large as 10GB.

One of the most important challenges that all FaaS platforms share is the cold

start delay. When a function is deployed in the cloud, a set of sequential processes

is executed when this function is first invoked. First, the function source code is

fetched from storage, deployed in a container, and then initialized. Once the first

request is handled, the following requests are executed faster for a certain period.

Then, since the container is already initialized, the function enters into idle mode,

and all following requests are executed instantaneously. However, cloud providers

can decommission the function container at any time, and whenever it does, clients

will experience a cold start again for their requests. This issue is often addressed by

researchers as “the cold start problem” , and many works [34]–[36] try to mitigate

this problem faced by FaaS. Still, most of these approaches used to reduce the cold

start time of serverless functions often require additional software and architectures

which are often seen as complex implementations by developers since it requires extra

computational resources and maintenance. Additionally, the lack of knowledge about

the benefits and drawbacks of each deployment type of AWS Lambda makes this

matter even worse.

Before the release of the new container-based deployment on AWS Lambda, de-

velopers had to compress their source code - including the external libraries and

dependencies - in a ZIP file which had a size limit of 250MB (uncompressed). This

file is usually referred to as the “Function package file”, and when the Lambda is

executed for the first time, it imports and uncompresses this function package which

is stored in an S3 Bucket, then loads the function for execution in a container. This

31

process is time-consuming, especially for large package sizes. The new container-

based deployment eliminates the unzip and container building process, which in turn,

could lower the initialization time. For this deployment type, a Docker image is built

locally and then sent to be stored on the Amazon Elastic Container Registry (ECR)

for use with AWS Lambda. AWS providers base container images for all supported

language runtimes and system architectures. Although this new container-based de-

ployment shows many advantages over its traditional counterpart, little research has

been conducted using this new approach.

In this research, we aim to fill in this knowledge gap by showing how to use ap-

plication and platform knowledge to reduce the initialization time on AWS Lambda.

We analyze the new container-based deployment and compared it against the tradi-

tional package deployment named ZIP deployment of AWS Lambda. We test the

performance of several real-world applications under different language runtimes and

architectures, and derive guidelines that developers and cloud admins can use to mit-

igate the cold start problem on AWS Lambda. We aim to answer three research

questions:

• RQ-1: What is the impact of the AWS Lambda package size on the initializa-

tion time when using the container-based deployment?

• RQ-2: How does the memory allocated to the AWS Lambda function affect the

initialization time when using the ZIP deployment compared to the container-

based deployment?

• RQ-3: Does the machine learning model size have the same impact on both

deployments of AWS Lambda functions?

The contributions of our research are:

• Presenting the first extensive analysis of AWS Lambda that takes into account

the ZIP and container-based deployment, the language runtime, the memory

32

and the package size of the function.

• Suggesting guidelines for reducing the cold start delay on AWS Lambda by

choosing the ideal deployment type based on application knowledge.

This research is structured as followed: We start by explaining the approach we

used for analyzing the performance of the container-based deployment and the appli-

cations tested (section 3.2), then we present the results for the execution time and

cold start performance of the two deployment types under different configurations

(section 3.3). The package size impact on the initialization time (section 3.3.2), the

memory size (section 3.3.2), the model size (section 3.3.2), and the language runtime

choice (section 3.3.2) are discussed, and guidelines are suggested. Finally, we discuss

the related work (section 3.4) before concluding this research (section 3.5).

3.2 Methodology

In this section, we go over the details of the methodology proposed in this research.

We answer RQ-1 and RQ-2 by analyzing the cold start and execution time of 13

serverless functions deployed with the ZIP deployment and container-based deploy-

ment and different memory sizes. Finally, we answer RQ-3 by studying the response

time of a machine learning function deployed with 5 distinct model sizes using the

two deployment types and a wide range of memory configuration.

3.2.1 Language Runtimes and Libraries Used

The choice of libraries and language runtimes to use in our analysis was based on

the most used libraries and language runtimes on AWS Lambda in the industry. We

have selected a wide range of Python libraries that are used in many studies with

serverless functions [37], [38]. In particular, we focus on image processing and machine

learning applications using the TensorFlow, Pillow and Sklearn libraries which are

also analyzed on [39]. The most used language runtimes on AWS Lambda are Python,

33

Download
Function Code

Cold Start / Initialization Time Execution Time

Uncompress
Function Package

Copy Function
Code To Container

Execute
Function Code

Bootstrap
the Runtime

New Request

Start New
Container

Remove
Container

Download
Function Image

ZIP DEPLOYMENT

Start New
Container

Execute
Function Code

Remove
Container

Idle

Idle

CONTAINER DEPLOYMENT
Cold Start / Initialization Time Execution Time

Figure 3.1: AWS Lambda lifecycle (adapted from [44]).

Node.js and Java, respectively [40], [41]. However, Node.js applications particularly

have never been tested with the new container-based deployment on AWS Lambda.

3.2.2 Function Deployment Configuration

Fig. 3.1 shows the two deployment types of AWS Lambda in detail. The lifecycle of

the container-based deployment of AWS Lambda is not documented by the company.

However, we assumed that the AWS Lambda Manager starts the container as soon

as it is fetched from storage in the ECR. This process could, in theory, speed up

the start-up time for some language runtimes since it does not need to build the

container image. We consider the cold start time - also referred as the initialization

time - the period from the invocation of the function to the time the code is ready for

execution. Although the objectives of RQ-1 and RQ-2 over the ZIP deployment have

already been answered in previous studies [42], [43], the effects on the container-based

deployment of AWS Lambda remain unknown to this date. Finally, the execution time

is the time that the function takes to execute when its container is up and running.

34

LambdaAPI Gateway CloudWatch Log File

HTTP

Locust

Figure 3.2: Architecture built on AWS.

3.2.3 Function Response Time Measurement

We invoke each Lambda using the AWS API Gateway through a RESTful API.

In particular, we follow the same benchmark configuration adopted on [45] where

AWS API Gateway is used for creating endpoints for invoking the Lambdas. AWS

CloudWatch is used for storing the execution log of both the Lambda and the API

Gateway call. We use the Locust1 benchmark tool for our performance tests. Lo-

cust is an open-source, scriptable, and scalable performance testing tool that allows

customized use test cases written in Python. Fig. 3.2 shows the architecture view

used for each Lambda function. We use the fields @billedDuration and @initDuration

from the original Lambda log file to calculate the execution time and initialization

time of each execution, respectively. For the execution time analysis, we check the

@logStream to extract the container identifier to validate the time by which the con-

tainer is decommissioned and a new one is launched.

3.2.4 Function Workloads Used

We evaluate the performance of the two Lambda deployments with 13 serverless

functions and 3 different language runtimes. These functions are coded in Python,

Node.js and Java and tested on both arm64 and x86 architectures. A wide range of

libraries and package sizes are used on each of these applications. All the 13 Lambdas

are invoked by the Amazon API Gateway. Table 3.1 compiles all applications used.

Image Classifier 230: Consists of a binary image classification function using

one of the most popular and comprehensive open-source machine learning libraries,

1https://locust.io

35

the scikit-learn (sklearn) [46]. It receives an image of any size, and it predicts which of

the two classes this picture belongs to. In order to do the predictions, we first reduce

the image to 59 × 59 pixels using the Pillow library, then we extract the Histogram

of Oriented Gradients (HOG) and run a Support Vector Machines (SVMs) model.

We train 5 SVMs models with different sizes (1MB, 7MB, 12MB, 16MB and 20MB)

to evaluate the impact of the model size in the cold start of the application. These

models are deployed on the Image Classifiers 230 to 249 from smallest to largest,

respectively.

Linear Regression: This application uses the open-source scientific computing

library for Python SciPy. Since its initial release in 2001, SciPy has become the most

used library for scientific algorithms in Python [47]. We compute a simple and yet

commonly used mathematical operation with this library, the least-squares regression

for two sets of measurements.

Image Black and White: We convert an image to black and while using the

OpenCV library. This library is widely used among developers for computer vision

applications.

TF Image Classifier: It is a popular open-source serverless application that uses

the TensorFlow Lite library. It consists of a multi-class image classifier using the on-

device inference framework from TensorFlow and both the ZIP and container-based

deployments are available on GitHub2.

Resize and Feature: This function is part of the Image Classifier 230, and it

performs the resize and feature extraction of an image of any size using the libraries

Pillow and Numpy.

Resize: This application is a simple application used to resize an image, and it is

also part of the Image Classifier 230. It uses only the Pillow library.

Factorial: Performs the factorial of a given number. It does not use any external

libraries. There are three versions of this application, one for each language runtime.

2https://github.com/edeltech/tensorflow-lite-on-aws-Lambda

36

T
ab

le
3.
1:

S
er
ve
rl
es
s
ap

p
li
ca
ti
on

s.

A
p
p

N
a
m
e

Z
IP

S
iz
e
(M

B
)

Im
a
g
e
S
iz
e
(M

B
)

A
rc
h
it
e
ct
u
re

R
u
n
ti
m
e

L
ib
ra

ri
e
s

P
y
th

o
n

Im
ag
e
C
la
ss
ifi
er

23
0

23
0

48
0

ar
m
64

P
y
th
on

3.
8

P
il
lo
w
,
N
u
m
p
y,

P
il
lo
w
,
N
u
m
p
y

S
k
le
ar
n
,
J
ob

li
b
,
S
ci
k
it
Im

ag
e

L
in
ea
r
R
eg
re
ss
io
n

18
6

28
3

ar
m
64

P
y
th
on

3.
8

S
ci
p
y,

N
u
m
p
y

Im
ag
e
B
la
ck

an
d
W

h
it
e

12
6

25
6

ar
m
64

P
y
th
on

3.
8

O
p
en
C
V
,
N
u
m
p
y,

P
il
lo
w

T
F
Im

ag
e
C
la
ss
ifi
er

83
34
0

x
86

P
y
th
on

3.
7

T
en
so
rF

lo
w
,
N
u
m
p
y,

P
il
lo
w

R
es
iz
e
an

d
F
ea
tu
re

64
21
0

ar
m
64

P
y
th
on

3.
8

P
il
lo
w
,
N
u
m
p
y

R
es
iz
e

14
18
2

ar
m
64

P
y
th
on

3.
8

P
il
lo
w

F
ac
to
ri
al

P
y
th
on

0.
00
4

17
6

ar
m
64

P
y
th
on

3.
8

N
o
d
e
.j
s

L
ar
ge

S
iz
e
N
o
d
e

23
4

32
3

x
86

N
o
d
e
14

gu
lp
-i
m
ag
em

in
,
js
p
d
f,
h
tm

l-
p
d
f,

n
at
u
ra
l,
te
x
t-
ex
tr
ac
to
r,
ji
m
p

M
ed
iu
m

S
iz
e
N
o
d
e

77
20
4

x
86

N
o
d
e
14

n
at
u
ra
l,
sh
ar
p

F
ac
to
ri
al

N
o
d
e

0.
00
6

14
8

x
86

N
o
d
e
14

J
a
v
a

L
ar
ge

S
iz
e
J
av
a

13
3

22
7

x
86

J
av
a
11

O
p
en
IM

A
J

M
ed
iu
m

S
iz
e
J
av
a

15
18
8

x
86

J
av
a
11

iT
ex
tP

D
F

F
ac
to
ri
al

J
av
a

10
18
5

x
86

J
av
a
11

37

Large Size Node.js: This application uses some of the most popular Node.js

packages from the official NPM Registry website3. It performs image processing as

well as natural language operations.

Medium Size Node.js: This function performs natural language operations using

the well-known package natural.

Large Size Java: It is a popular open-source application that performs image

processing and mathematical operations using the award-winning library OpenIMAJ.

This application is openly available on GitHub4.

Medium Size Java: This function converts a text input to a PDF document

using the popular library ItextPDF.

We classify all 13 applications into different application size groups according to

the language runtime aiming to answer RQ-1. The Image Classifier 230 is used to

answer RQ-2 and RQ-3, and finally, the three factorial applications are analyzed to

visualize the impact of the language runtime on the two deployment types.

3.3 Experimental Evaluation

We performed a combination of tests on both the AWS Lambda ZIP and container-

based deployments and analyzed the execution time and initialization time of each

configuration. The experiments were conducted over an extended period of time from

December 28th, 2021, to January 18th, 2022. All tests were performed in the AWS

region us-east-1 where each Lambda handles one request per time. The benchmark

tests were done using both the arm64 and x86 architectures. We compared the two

deployments using several metrics that include the median, the 95th percentile and

the average of the response time and the initialization time, as well as the cumulative

distribution function (CDF) of all experiments. We first discuss the experimental

setup of each test, and then present the results and discussion of the execution time

3https://www.npmjs.com
4https://github.com/eugenp/tutorials/tree/master/image-processing

38

followed by all three research questions and the impact of the language runtime. All

the experiments are openly accessible on GitHub5.

3.3.1 Experimental Setup and Data Collection

We first measured the execution time of all 13 applications for both Lambda deploy-

ments. Each application was invoked 400 times with requests sent every 1 second.

This interval guarantees no queue is formed since the worst execution time is less than

1 second. During this period of approximately 7 minutes, none of the containers were

decommissioned. All the logs from AWS CloudWatch, including the Lambda and

API Gateway log files, were analyzed and validated. We studied the execution time

for 128MB, 256MB, 320MB, 384MB, 448MB and 512MB memory configurations.

Then, we evaluated the cold start performance of all applications with different

memory configurations. We invoked the Lambdas 20 times with requests sent every

10 minutes. In total, each test lasted 200 minutes, and it was conducted with 128MB,

256MB, 320MB, 384MB, 448MB and 512MB memory configurations. According to

our benchmark tests, the idle time of AWS Lambda was less than 10 minutes for all

programming languages. We use 10 minutes interval between invocations to com-

pute the cold start time of AWS Lambda. This interval guarantees that each call is

executed by a new container.

The second set of tests for the cold start were aiming to study the memory impact

on the cold start time. We tested the Image Classifier 230 under 128MB, 256MB,

320MB, 384MB, 448MB, 512MB, 640MB, 704MB, 768MB, 832MB, 896MB, 960MB,

1024MB, 1088MB, 1152MB, 1216MB, 1280MB, 1344MB, 1408MB, 1472MB, 2048MB

and 3008MB memory configurations. Finally, we used 5 SVMs models from different

sizes to study the relationship between the model size and cold start time on both

deployments. In order to do this, we used different amounts of data to train these 5

models.

5https://github.com/pacslab/serverless-iot-deployment

39

https://github.com/pacslab/serverless-iot-deployment

Image Container ZIP Package

Deployment

100

150

200

250

300

350

400

450

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Execution Time for 128MB

173.3
175.6

Distribution

Mean

Image Container ZIP Package

Deployment

10

20

30

40

50

60

70

80

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Execution Time for 512MB

32.6

34.2

Distribution

Mean

Figure 3.3: Execution time for the Image Classifier 230.

3.3.2 Results and Interpretations

We tested the execution time and cold start time of all 13 functions for both Lambda

deployments, and present the results for each research question below.

Execution Time

In order to answer RQ-1, RQ-2 and RQ-3, we need to first validate whether or

not the execution time differ according to the deployment type. Therefore, we an-

alyzed the execution time of all 13 applications. Fig. 3.3 shows the execution time

distribution for two memory configurations of the Image Classifier 230 application.

As we can see, both execution times are statistically equivalent. The same was seen

for the Node.js and Java applications. Furthermore, the execution time of the AWS

Lambda ZIP and container-based deployments are equal for all memory sizes and

language runtimes. Although we have noticed a slight difference in the execution

time in favour of the container-based deployment, both measurements are statically

equivalent.

40

Zip Package Size

1

14

64

83

126

186

230

0 30 60 90 120 150 180 210 240

Size (MB)

Factorial

Resize

Resize and Feature

TF Image Classifier

Image Back and White

Linear Regression

Image Classifier 230

Figure 3.4: ZIP package size of all Python serverless applications.

RQ-1: What is the impact of the AWS Lambda package size on the ini-
tialization time when using the container-based deployment?

On RQ-1 we want to study the impact of the package size of the Lambda function

on the ZIP and container-based deployments. We first studied this on Python func-

tions, and then moved to the other programming languages. The right chart of Fig.

3.5 shows the different sizes of the ZIP deployment. We measured the initialization

time of both deployments, and then calculated the percentage of improvement of the

container-based deployment over the ZIP deployment. This data is presented on the

right chart of the Fig. 3.5.

We observe two trends with regards to the package size of Python applications.

The container-based deployment shows a better performance for large package sizes

and small memory configurations. For instance, the initialization time of the Image

Classifier 230 was 78% smaller than the ZIP deployment for 128MB memory. As

41

C
o

ld
 S

ta
rt

 I
m

p
ro

v
e
m

e
n

t
o

f
T

h
e
 I
m

a
g

e
 C

o
n

ta
in

e
r

(A
v
e
ra

g
e
)

-9
.3

5
.66
.2

1
4
.8

3
8

2
1

7
8

-1
2
.7

2
.7

6
.2

1
3
.3

3
5
.2

1
9
.4

7
5
.2

-1
6
.7

-7
.9

6
.8

1
4
.6

3
2
.3

1
8
.4

6
9
.9

-1
7
.8

-3
.9

1
.7

1
4
.9

3
0
.1

1
8
.7

6
7
.3

-2
1
.7

-1
3

.3

4
.2

1
5
.5

2
7
.7

1
7
.6

6
3
.8

-2
5
.7

-1
4
.2

3
.1

1
5
.7

2
5
.2

1
7
.5

5
9
.4

-2
7
.7

-1
2
.8

4
.3

1
3
.7

2
5

1
8
.3

5
5
.9

5
1
2
 M

B

5
1
2
 M

B

5
1
2
 M

B

5
1
2
 M

B

5
1
2
 M

B

5
1
2
 M

B

5
1
2
 M

B

4
5
8
 M

B

4
5
8
 M

B

4
5
8
 M

B

4
5
8
 M

B

4
5
8
 M

B

4
5
8
 M

B

4
5
8
 M

B

3
8
4
 M

B

3
8
4
 M

B

3
8
4
 M

B

3
8
4
 M

B

3
8
4
 M

B

3
8
4
 M

B

3
8
4
 M

B

3
2
0
 M

B

3
2
0
 M

B

3
2
0
 M

B

3
2
0
 M

B

3
2
0
 M

B

3
2
0
 M

B

3
2
0
 M

B

2
5
6
 M

B

2
5
6
 M

B

2
5
6
 M

B

2
5
6
 M

B

2
5
6
 M

B

2
5
6
 M

B

2
5
6
 M

B

1
9
2
 M

B

1
9
2
 M

B

1
9
2
 M

B

1
9
2
 M

B

1
9
2
 M

B

1
9
2
 M

B

1
9
2
 M

B

1
2
8
 M

B

1
2
8
 M

B

1
2
8
 M

B

1
2
8
 M

B

1
2
8
 M

B

1
2
8
 M

B

1
2
8
 M

B

-3
0

-2
0

-1
0

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Im
p
ro

v
e
m

e
n
t
(%

)

F
a
c
to

ri
a
l

R
e
s
iz

e

R
e

s
iz

e
 a

n
d
 F

e
a
tu

re

T
F

 I
m

a
g
e
 C

la
s
s
if
ie

r

Im
a
g
e

 B
a

c
k
 a

n
d
 W

h
it
e

L
in

e
a

r
R

e
g
re

s
s
io

n

Im
a
g
e

 C
la

s
s
if
ie

r
2

3
0

Z
IP

IS
 B

E
T

T
E

R

C
O

N
T

A
IN

E
R

IS
 B

E
T

T
E

R

F
ig
u
re

3.
5:

In
it
ia
li
za
ti
on

ti
m
e
im

p
ro
ve
m
en
t
of

th
e
co
n
ta
in
er
-b
as
ed

de
pl
oy
m
en

t
ov
er

th
e
Z
IP

de
pl
oy
m
en

t
of

th
e
P
y
th
on

fu
n
ct
io
n
s.

42

we increase the memory size, this difference decreases and the two deployment types

become similar in cold start time. For most of our tests, smaller memory configu-

rations favoured the container-based deployment since this Lambda deployment type

presented a smaller cold start time.

Our results contradict the academic work presented on [45] where the container-

based deployment of Python applications showed worse initialization time than the

ZIP deployment. Unlike our experiments, the authors on [45] used only one Python

application - with a small package size - and tested it with one memory configura-

tion only. Even though they only evaluated one specific scenario, they claimed that

the container-based deployment was worse than the ZIP deployment for interpreted

programming languages such as Python when it comes to cold start time. In con-

trast, our results showed that the size of the Lambda package - the ZIP archive or

Docker container image - is, in fact, a key factor in the initialization time of these

two deployments.

Another observation is that the package size impacts the cold start time of both

deployments. Small package sizes had better initialization time with the ZIP deploy-

ment. For the Python Factorial function, which has only 4kB in size, the container-

based deployment was worse than the ZIP ’s for all memory configurations with figures

varying from 9.3% to 27.7% worse initialization times for 128MB and 512MB, respec-

tively. These findings are in line with the results presented on [45], and it may be due

to the fact that Python functions are non-static binary programs, and consequently,

all libraries and modules have to be imported dynamically which adds overhead in

the initialization time of the container-based deployment.

One of the most important findings is the inflection point by which the ZIP deploy-

ment becomes better than the container-based deployment. This can be seen when

we analyze the initialization time for the Resize application which has 14MB in size,

and it uses a popular Python library for image manipulation - Pillow. From this

data, we can see that the point of inflection is located between 192MB to 256MB

43

where the container-based deployment becomes worse than the ZIP ’s by 7.9%. This

is because while for 192MB the former deployment was 2.7% better than the latter

one, for 256MB the container-based was 7.9% worse than the ZIP deployment.

Therefore, we advocate that developers and cloud managers should choose the

container-based deployment whenever they are using a large Python application with

external libraries and dependencies. In our tests, Python applications with sizes equal

to or larger than 64MB are better with the container-based deployment for memory

configurations of up to 512MB. If, however, developers are deploying smaller Python

applications of 14MB in size, for instance, further testing is necessary to find out the

best deployment according to their memory needs. In our tests, Python applications

with 14MB in size and up to 192MB memory are better with the container-based

deployment. After this point, the ZIP deployment becomes a more suitable option.

Finally, small Python applications of 1MB or less in size that have no libraries or

external modules should be deployed using the ZIP deployment since it offers a better

initialization time.

Even though both Python and Node.js are dynamically-typed languages, the per-

formance of these languages under the container-based deployment is different. The

left chart of Fig. 3.6 shows the percentage of improvement of the container-based

deployment for Node.js functions. For large Node.js applications, the container-

based deployment showed a similar cold start compared to the ZIP deployment. Both

the average and 95th percentile were statically equivalent for most memory sizes.

For instance, for 320MB memory, the average differs in only 0.43% in favour of the

ZIP deployment. Although we observed a tiny improvement in the average of the

container-based deployment for small memory sizes of 5.9 %, the 95th percentile of

this deployment is in fact 10% worse than the ZIP deployment. Therefore, the choice

of deployment has little to no impact on the initialization time of large Node.js ap-

plications.

When it comes to small packages sizes, the same outcome found for Python applica-

44

Cold Start Improvement of The Image Container NodeJS (Average)

-42.2

5.6

5.9

-46.3

1.1

-6.6

-49.7

5.4

-1.6

-50.6

-0.8

-0.4

-39.5

-2.1

-0.8

-36.8

-25.2

7.5

-47.7

-24.2

-1.3

512 MB

512 MB

512 MB

458 MB

458 MB

458 MB

384 MB

384 MB

384 MB

320 MB

320 MB

320 MB

256 MB

256 MB

256 MB

192 MB

192 MB

192 MB

128 MB

128 MB

128 MB

-60 -50 -40 -30 -20 -10 0 10 20
Improvement (%)

Factorial

Mid Size

Large Size

ZIP

IS BETTER

CONTAINER

IS BETTER

Figure 3.6: Initialization time improvement of the container-based deployment over
the ZIP deployment of the Node.js functions.

tions also applies to Node.js functions. This is because the Node.js Factorial function

was also faster with the ZIP deployment. Similar to the Python applications, as we

increase the application package size, this difference becomes smaller and the two de-

ployments perform similarly. This can be seen when we analyze the initialization time

for medium size Node.js applications. However, unlike Python applications, Node.js

applications performed better or equal with the ZIP deployment on all package sizes.

Therefore, we recommend that cloud admins use this type of deployment for Node.js

applications of any package size up to the 250MB limit.

Unlike the results seen with the dynamically-typed languages Python and Node.js,

the performance of Java functions, which is a is a statically-typed language, is quite

distinct. The right chart of Fig. 3.7 shows the percentage of improvement of the

container-based deployment for Java applications. Overall, the ZIP deployment out-

45

Cold Start Improvement of The Image Container JAVA (Average)

-7.7

1.6

-44.1

-8.3

-3.1

-45.4

-11.5

-2.8

-46.4

-11.5

-9.9

-36.9

-13.1

-7.6

-37.6

-10.7

-10.3

-37.9

-10

-11.2

-40

512 MB

512 MB

512 MB

458 MB

458 MB

458 MB

384 MB

384 MB

384 MB

320 MB

320 MB

320 MB

256 MB

256 MB

256 MB

192 MB

192 MB

192 MB

128 MB

128 MB

128 MB

-60 -50 -40 -30 -20 -10 0 10 20
Improvement (%)

Factorial

Mid Size

Large Size

ZIP

IS BETTER

CONTAINER

IS BETTER

Figure 3.7: Initialization time improvement of the container-based deployment over
the ZIP deployment of the Java functions.

performed the container-based deployment on all memory and package sizes. In fact,

we have noticed the opposite trend where larger applications performed significantly

better with the ZIP deployment. For instance, the average cold start time of the

container-based deployment was 46.4% worse than the ZIP ’s for the large size Java

function with 256MB memory configuration. As we decrease the package size, this

difference also decreases but for almost all configurations the ZIP deployment is prefer-

able.

Our results contradict the findings on [45] where a Golang function - also a statically-

typed language - is analyzed. The authors on [45] advocate that statically-typed lan-

guages such as Golang and Java have similar initialization times on both deployments.

However, they only tested one package size and did not test Java applications. From

our findings, we can also conclude that the ZIP deployment should be used for Java

46

128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024 1088 1152 1216 1280 1344 1408 1472 2048 3008

Memory (MB)

0

2

4

6

8

10

12

14

C
o
ld

 S
ta

rt
 (

s
)

0

2

4

6

8

10

12

14

Container-based 95th Percentile

ZIP 95th Percentile

ZIP Average

Container-based Average

Figure 3.8: Initialization time of the Image Classifier 230 under different memory
configurations.

applications of any package size up to the 250MB limit.

Recommendations of RQ - 1

• Python applications with large package sizes have faster initialization time with
the container-based deployment while small applications are better with the ZIP
deployment. Our experiments show that the inflection point is 64MB in size.

• Node.js applications with small package sizes have faster initialization time with
the ZIP deployment while medium and large size ones have approximately equiv-
alent cold start time to some extent.

• Java applications of any package sizes have faster initialization time with the
ZIP deployment.

RQ-2: How does the memory allocated to the AWS Lambda function affect
the initialization time when using the ZIP deployment compared to the
container-based deployment?

Moving on to RQ-2, we wanted to see if the memory size had the same impact in

the cold start time of the two different deployments for all three language runtimes.

First, we analyzed only Python applications. Fig. 3.8 shows the Image Classifier

230 under a wide range of memory configurations. As expected, the container-based

deployment presented a significantly smaller initialization time for memories from

47

0 2000 4000 6000 8000 10000 12000 14000

Cold Start (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F ZIP 128MB

ZIP 1472MB

Container 128MB

Container 1472MB

Figure 3.9: CDF of the Image Classifier 230 initialization time.

128MB to 512MB. As we increase the memory size, this difference gets smaller and

the two deployments become equivalent eventually.

This behaviour is seen when we analyze the average and 95th percentile initializa-

tion time for the 1472MB memory configuration. Even though the average initial-

ization time of the container-based deployment is 8% better, the 95th percentile is

5% worse. Thus, we assumed this is the point where the two deployments reach the

same minimum value. In order to further investigate the initialization time of the

two deployments for very small and very large memories, we plotted the CDF of 200

executions for 128MB and 1472MB memory configurations on Fig. 3.9.

From the CDF on Fig. 3.9, we can see that the contained-based deployment with

128MB memory configuration had a cold start average 4.5× smaller than the ZIP

deployment. However, they have near-identical cold start CDFs for 1472MB memory

configuration. Thus, we conclude these two deployments have the same initialization

time for memory configurations larger or equal to 1472MB. Therefore, developers

should consider the size of the application and the memory allocated to the Lambda

to decide on what deployment type to choose. The analysis conducted on [42] and [43]

also suggests that using large memory sizes can reduce the cold start effect in AWS

48

Lambda when using the ZIP deployment. Thus, our results validate this behaviour

for the container-based deployment as well.

However, function memory has little to almost no impact on the initialization time

of both Node.js and Java applications. This is especially true for small size appli-

cations such as the Factorial one. In both these languages, the memory played no

role in the performance of the cold start. The same was also seen for large-size ap-

plications where the performance of all memory configurations was similar. However,

for medium-size applications, the memory size does affect the performance of the

cold start. This is because both the Node.js and Java applications showed a slightly

better performance in favour of the container-based deployment for small memory

configuration. As we increase the memory size of the medium size Node.js function,

for example, this difference becomes smaller and after 256MB the ZIP deployment

becomes better. This behaviour was the same observed for medium Python applica-

tions.

As a result, the impact of the Lambda memory on both Node.js and Java functions

depends on the package size. We recommend that developers and cloud admins

should choose the container-based deployment only if the application package size

is between 15-77MB for Node.js applications under small memory configurations.

For both small and large functions, Node.js and Java functions should use the ZIP

deployment instead. Finally, we tested both the arm64 and x86 architectures on all

applications, and they are equally in performance. Thus, the architecture does not

influence the cold start time of Lambda applications.

Recommendations of RQ - 2

• Small memory sizes, e.g., 128MB, make the initialization time of the container-
based deployment faster when deploying medium and large size Node.js and
Python applications compared to the ZIP deployment.

• Very large memory sizes, e.g., 1472MB for Python applications, make the ini-
tialization time of both deployment types approximately equivalent.

49

128 192 256 320 384 448 512
Memory (MB)

2

4

6

8

10

12

14

16

C
o

ld
 S

ta
rt

 (
s
)

ZIP Deployment

230MB Package

236MB Package

241MB Package

245MB Package

249MB Package

128 192 256 320 384 448 512
Memory (MB)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

C
o

ld
 S

ta
rt

 (
s
)

Container-based Deployment

230MB Package

236MB Package

241MB Package

245MB Package

249MB Package

Figure 3.10: Model size impact in the initialization time of the ZIP deployment (left)
and container-based deployment (right).

RQ-3: Does the machine learning model size have the same impact on
both deployments of AWS Lambda functions?

Finally,RQ-3 investigates the effect of the model size in the cold start of the functions.

We tested the 5 SVMs models and included them inside the original application

Image Classifier 230. The 5 applications were named Image Classifier 230MB, 236MB,

241MB, 245MB and 249MB from smallest to largest, respectively. Fig. 3.10 shows

the effect the model size has on the two deployments studied. As we expected, the

larger the model size, the higher the cold start time for the ZIP deployment. Also,

the curve concave decreases as we increase the memory size for all model sizes under

the ZIP deployment. The container-based deployment, however, was slightly less

susceptible to the model size changes. While the variation of the model size caused

a 22% change in the cold start time of the ZIP deployment, this figure was only 11%

for the container-based deployment under 128MB memory configuration.

Therefore, changes in the model size of machine learning applications are less likely

to cause variations in the cold start time of container-based deployment compared

with the ZIP ’s. This is especially true when we analyze the cold start of the Image

50

Classifiers 241 and 245. The two curves for these applications are approximately

equivalent for the container-based deployment. For example, for 256MB memory,

these two applications had only 0.33% difference in the initialization time of the

container-based deployment whereas for the ZIP version this figure was 5.39%, which

is roughly 17 times more than the former deployment.

Recommendations of RQ - 3

• Variations in the model size are less likely to cause impact in the initialization
time of the container-based deployment compared to the ZIP deployment.

Language Runtime Impact

Previous works have shown that the choice of the language runtime affects the cold

start time of AWS Lambda [48], [49]. We extend RQ-1 and RQ-2 by analyzing

the impacts of the language runtime in the cold start of serverless applications. We

analyzed the average and 95th percentile initialization time of the Factorial function in

Python, Node.js and Java. Fig. 3.11 compiles the cold start time of these applications

on both the ZIP and container-based deployments for 128MB memory configurations.

Our findings show a noticeable impact of the language runtime in the cold start of

applications. As can be seen, both deployments had the same trend where Node.js

functions were the fastest followed by Python and Java, respectively. Java appli-

cations have the worse initialization time among all three languages, with figures

approximately 4 times higher than the Node.js ones for the ZIP deployment. For the

container-based deployment, this figure is around 3 times which is still representative.

Our results follow the work present on [48], [49] where is shown that Java functions

have a high trail latency compared to Python applications. However, our work showed

that Node.js applications have the best performance which contradicts the works [48],

[49] since they claim that Node.js functions are in fact worse than Python applica-

tions. One of the reasons may be due to the fact that these academic benchmark

tests were performed using an older version of all language runtimes analyzed.

51

Container-based Deployment

Node.js Python Java
0

200

400

600

800

1000

1200

C
o

ld
 S

ta
rt

 (
m

s
)

95th Percentile

Average

ZIP-based Deployment

Node.js Python Java
0

200

400

600

800

1000

1200

C
o

ld
 S

ta
rt

 (
m

s
)

95th Percentile

Average

Figure 3.11: Factorial function under different language runtimes and 128MB memory
configuration.

Our result is surprising since it also contradicts the work on [45] where their authors

state that the language runtime has negligible implications for cold-start delays for

the ZIP deployment. As seen on the right chart of Fig. 3.11, the impact of the

programming language is significant for the 128MB memory configuration. One of the

possible reasons that can explain this opposite outcome is the memory configuration

allocated to the Lambda. While we tested a wide range of memory sizes - from

128MB to 3GB - the authors on [45] only tested it with 2GB which may bias their

findings. However, the analysis performed on [42] and [43] also suggests that using

dynamically-typed languages such as Node.js and Python can reduce the cold start

effect in AWS Lambda when using the ZIP deployment. Our study shows that this

impact is also seen with the container-based deployment in a corresponding degree.

In conclusion, the container-based deployment had a better initialization time for

larger Python applications and small memory configurations. Also, it is more suited

to deploy machine learning applications with embedded models. Python applications

larger or equal to 64MB in size should be deployed as containers whenever they are

running with 512MB or less memory. Additionally, very large Python applications

52

of 230MB or more in size are faster when using container-based with up to 1472MB

of memory. Finally, both Node.js and Java applications have, in general, faster or

equal initialization time when using the ZIP deployment, especially for large memory

configurations.

3.4 Related Work

Prior work includes a number of frameworks and FaaS architectures developed to

mitigate the cold start time present in most of the public cloud providers nowadays.

WLEC [50] and Pigeon [51] are alternative approaches to AWS Lambda that reduce

the initialization time, and can be integrated with other serverless providers. Applica-

tion knowledge is used on [52] for reducing the duration of cold start by implementing

a lightweight choreography middleware for FaaS. However, all these works are complex

architectures that require extra computational resources and maintenance in order to

be used with Lambda functions. Cloud admins and developers could use our insights

instead, and change the Lambda deployment type according to their applications to

significantly reduce the initialization time.

Many benchmark tests addressed the impact of the memory size and package size

on the cold start of serverless functions. Daniel et al. [53] studied the cold start time

of a wide range of applications on AWS Lambda, Google Cloud Functions, Microsoft

Azure Functions, and IBM Cloud Functions. This type of performance analysis was

also investigated on [53]–[55], however, since no cloud provider supported container-

based function deployment at the time, no prior work was developed using this new

development type. Additionally, the open-source benchmark suite for characterizing

serverless platforms ServerlessBench developed on [56] evaluates the cold start time of

functions with different sizes on AWS Lambda using the ZIP deployment. Similar to

our results, the authors on [56] advocate that large-size functions suffer from longer

initialization time due to larger data transmission and package import overhead.

However, only Python applications are studied on [56], and our work is the first to

53

show that these impacts could be mitigated by changing the deployment type for

some language runtimes.

The size limit of 250MB of AWS Lambda is challenging for most of the machine

learning applications since they use large libraries and models. AMPS-Inf [57] is a

framework that solves this problem by partitioning customized libraries and modules

across a number of Lambda functions. Although this solution can be used for large

Lambda functions, AWS Lambda now supports Docker container images of up 10GB

in size, and as demonstrated on our benchmark tests, this deployment is ideal for large

workloads. The choice of language runtime is also discussed on [38], [48], [49], however,

our study is the first of its kind to address the container-based deployment with

Node.js and other programming languages. In addition to the size limitation of the

ZIP deployment, many Internet of Things (IoT) and latency-critical applications often

face performance issues when using AWS Lambda due to the cold start problem. The

survey on [58] shows that despite the many challenges the cold start delay brings to

these applications, they still use serverless functions platforms such as AWS Lambda.

Now, developers and companies can use the insights we present in this research to

mitigate the cold start problem these functions face.

The only study found that partially investigates the use of container-based Lamb-

das is the STeLLAR benchmarking framework [45]. STeLLAR is an open-source

serverless benchmarking framework that enables an accurate performance character-

ization of serverless deployments. It evaluates the cold start time of the ZIP and

container-based deployments of Lambda applications with two types of applications.

However, unlike our benchmark tests, the authors on [45] only tested their applica-

tions with a 2GB memory configuration. Their findings show that for small Python

applications, the ZIP deployment is recommended based on the initialization time.

Contrary to the aforementioned work, our findings suggest that memory, package

size and language runtime are pivotal when choosing the best deployment type for

better cold start performance. Additionally, unlike the work presented on [56] and

54

our study where real-world applications were used and all functions imports and uses

external libraries and dependencies, a random file is used for simulating the different

application sizes on the analysis performed by STeLLAR.

As demonstrated in this research, the impact of choosing a compiled or interpreted

language runtime on the cold start is tremendous. The work on [59] came with one

hypnotizes why Java functions have the worst initialization time of all three language

runtimes tested. They claim it is because Java applications need more resource-

intensive environments for starting the JVM, which overcharges the already busy

CPU. This may explain why large Java functions performed badly with the container-

based deployment. The authors on [59] also stated that this effect is smaller for higher

memory settings. Our work is additional to this analysis since we demonstrate that

medium-size Java applications when running with small memory configurations may

present a lower cold start time when deployed as a container instead of a ZIP package.

3.5 Conclusion

Over the past five years, serverless computing has grown exponentially in popularity,

and it is now one of the most used software architectures in the industry. However,

not much focus was given to the underlying problems this model brings to light. The

cold start problem is one of the biggest challenges that comes when using serverless

functions. Additionally, the many choices around language runtime, memory configu-

ration and deployment types one can have for deploying their workloads on the cloud

make this problem even more complex. To address this issue, we presented the first

extensive study about the impacts caused by the language runtime, memory alloca-

tion and function package size in the initialization time of AWS Lambda when using

the two deployment types available, the ZIP deployment and the recently introduced

container-based deployment.

We proposed guidelines for Python, Node.js and Java serverless functions under

different memory configurations and application sizes according to which deployment

55

type presents the best cold start performance. Developers can use these insights to

achieve lower initialization times when deploying their applications on AWS Lambda

by using application and platform knowledge.

56

Chapter 4

GreenLAC: Resource-Aware
Dynamic Load Balancer for
Serverless Edge Computing
Platforms with AWS Greengrass

In this chapter, we present GreenLAC, a load balancer and reverse proxy for sup-

porting serverless deployments of edge-core IoT applications with AWS Greengrass.

GreenLAC enables applications running on resource-constrained edge nodes to lever-

age neighbours edge nodes and the core cloud for real-time processing of workloads.

It monitors the host hardware and distributes requests according to predefined con-

figurations to prevent failures at the edge. GreenLAC is completely integrated with

one of the most popular edge runtimes and cloud services for IoT, the AWS Green-

grass, and it supports the automatic deployment of serverless functions in the AWS

core. We performed rigorous experiments on both AWS cloud and with a real-world

application deployment using IoT devices and edge nodes. Preliminary results show

that GreenLAC can increase the processing capabilities of hardware-restricted edge

machines when using core resources in combination with serverless functions for IoT

applications.

57

4.1 Introduction

In the past decade, we have witnessed the rapid growth of smart applications run-

ning at end-user devices and IoT gadgets. Latency-sensitive IoT applications require

computing resources to be closer to customers and to end devices for real-time pro-

cessing tasks. Edge, fog, and mobile edge computing [60], [61] address this extension

of traditional cloud computing for this in-demand need. Edge computing brings com-

putational power in close proximity to data sources and IoT devices. Edge devices

can be used to reduce the data processing delay faced when using traditional cloud

computing in the core. Moreover, IoT devices and gadgets such as Raspberry Pi1 and

BeagleBone2 can be expanded to execute other computation tasks as well, enabling

them to be processing edge nodes.

Public cloud providers such as AWS and Microsoft Azure now support edge com-

puting and several IoT services at the edge. AWS was the pioneer to bring core

cloud services to the edge with their service named AWS Greengrass which allows

customers to execute important cloud services to on-premises edges. AWS Lambda

functions and Docker containers - the same image containers used by ECS - can be

deployed at the edge node and run offline or online. They can communicate with

other services in the core, and users can deploy workloads at the edge using the AWS

console. The same Lambda function can be deployed both at the edge and in the

core, and complex serverless applications can be built using both the core and edge

nodes [62]. However, local Lambdas running at the edge cannot be scaled automat-

ically nor forward requests to the core under edge saturation. Microsoft Azure also

supports executing core services at the edge using their Azure IoT Edge. The same

Azure Function can be deployed at the edge and in the core simultaneously. Users

can also deploy containers to the IoT edge and run complex serverless applications

[63]. Even though many solutions for load distribution across the edge and core nodes

1https://www.raspberrypi.org
2https://beagleboard.org/bone

58

https://www.raspberrypi.org
https://beagleboard.org/bone

using AWS Greengrass have been proposed on [64]–[66], they often require complex

architectures and implementations, and there is no open-source component for AWS

Greengrass that supports dynamic load balancing of serverless applications running

on edges and in the core simultaneously.

In this research, we introduce GreenLAC, an open-source component for AWS

Greengrass that performs load balancing and resource monitoring on edge computing.

GreenLAC is used as a reverse proxy at the edge nodes, and it is integrated with

AWS Lambdas deployed both at the edges and in the core cloud. The proposed

component has been validated by extensive experimentation on AWS and on-premises

clouds using embedded architectures with a real-world IoT application. To the best

of our knowledge, GreenLAC is the first open-source AWS Greengrass component for

resource-aware dynamic load balancing of serverless applications.

4.2 GreenLAC

In this section, we explain the architecture and design of GreenLAC, and show how

it uses the core resources for running serverless functions and for handling spikes in

the workload. We evaluate GreenLAC on several architectures on both AWS and on

a private cloud. The source code and deployment instructions are openly accessible

on GitHub3.

4.2.1 System Architecture

AWS Greengrass Lambda Autoscaler Core (GreenLAC) is a ready-to-use component

for AWS Greengrass with minimal requirements and configurations needed. It can

be used with any device or server running AWS Greengrass, and it supports load

distribution to multiple edge nodes and core clouds. To the best of our knowledge,

GreenLAC is the first open-source component for AWS Greengrass that allows load

distributions among edge and core nodes with fallback and scaling features. It moni-

3https://github.com/pacslab/GreenLAC

59

https://github.com/pacslab/GreenLAC

Local Edge

Lambda

Metrics

Nucleus

IoT Device

Lambda
Manager

HTTP

GreenLAC

AWS Greengrass

B

A

Figure 4.1: Deployment of the GreenLAC component on AWS Greengrass.

tors the hardware usage of the hosting OS to prevent resource starvation by the system

and AWS Greengrass on the edge nodes. By fetching real-time CPU and memory

usage, GreenLAC can distribute requests among edge and core nodes to preserve the

SLAs and SLOs of the services. It was primarily designed to work with AWS Lambda

functions running on AWS Greengrass at the edge or in the core. However, Green-

LAC also supports microservice applications when using container deployments with

the Docker component on AWS Greengrass. It was built using the Java programming

language with the Spring Boot Framework4.

Figure 4.1 shows the deployment of the GreenLAC component on AWS Greengrass

inside a local edge node. This deployment can be performed using either the AWS

Console through AWS IoT or by the automation script provided using the AWS CLI.

GreenLAC works by intercepting HTTP requests sent by IoT devices to the edge node,

and distributing them according to user rules and hardware constraints. It forwards

requests to either the local edge node, remote edge nodes or the core according to the

current state of the local edge node. The flow B of figure 4.1 shows the typical use

4https://spring.io/projects/spring-boot

60

https://spring.io/projects/spring-boot

case scenario of AWS Greengrass where an IoT device sends requests to the Nucleus

component which then forwards them to the Lambda Manager. When we deploy the

GreenLAC component, these requests are sent to GreenLAC instead as shown in flow

A of figure 4.1. GreenLAC forwards requests to any available edge node or to the

core.

In order to use multiple edge nodes and clouds for load distribution, developers

are required to deploy their serverless applications, AWS Lambdas or container-based

microservices, in the corresponding AWS IoT Groups and on AWS Lambda. Users

can also configure AWS ECS in combination with AWS ECR to create clusters to be

used with GreenLAC when using microservices.

Since the Lambda Manager component of AWS Greengrass is not open source,

there is no feasible way to communicate with Lambda functions without using an

interface for communication. GreenLAC requires that Lambda functions running on

AWS Greengrass expose a TCP port for HTTP communication. The Greengrass SDK

allows Lambda functions to communicate with other Lambdas using HTTP or MQTT

communication, and it is available in all supported language runtimes. Additionally,

AWS API Gateway needs to be configured to accept requests to Lambda functions

in the core cloud.

To prevent failures and application crashes, GreenLAC monitors the CPU and

memory utilization of the hosting device and redistributes requests whenever these

two metrics reach a predefined threshold. Cloud engineers can use the GreenLAC

component on each edge node of their cluster, and all the configuration is managed

through the AWS Console. Figure 4.2 shows the deployment of GreenLAC in two

edge nodes, one running AWS Greengrass inside an EC2 instance, and another one

with a Raspberry Pi device. This arrangement allows the GreenLAC deployed on

the Local Pi Edge to distribute the load that comes from the IoT devices connected

to it (flow A) to three different sources: Local Pi Edge, remote EC2 edge (flow B)

and AWS Core (flow C). On this configuration, the GreenLAC on the EC2 Edge will

61

EC2 EdgePi Edge

Lambda

Manager

Image

Classifier 230

Metrics

Nucleus

IoT Devices

...

HTTP

Image

Classifier 230

Raspberry Pi

Lambda
Manager

API Gateway

HTTP

GreenLAC

AWS Greengrass

Amazon

EC2

AWS Core
Image

Image

Classifier 230

Metrics

Nucleus Lambda
Manager

HTTP

GreenLAC

AWS Greengrass

A

C

B

Figure 4.2: Deployment of the GreenLAC component on two edge nodes.

distribute its load across itself and the AWS Core (flow C).

The architecture of GreenLAC is composed of four modules. Figure 4.3 shows

the architecture of GreenLAC. IoT devices send requests to the reverse proxy, and

based on the load balancing policy and current OS metrics, the controller forwards

the requests to either the edges nodes or the core. GreenLAC can be deployed on

multiple edge nodes or on a single node.

Reverse Proxy: GreenLAC exposes all local endpoints that are running inside

AWS Greengrass on its reverse proxy interface. It is a generic RESTful controller that

accepts any payload and any HTTP method. The API path present in the request is

used to forward it to the corresponding service. This interface is generic, and it does

not require any customization when used with a new serverless function. The reverse

proxy can reject requests whenever the service is saturated. This is because users can

set the size limit of the internal buffer for concurrent requests.

Monitor: The monitoring interface is in charge of acquiring metrics of CPU and

memory from the hosting operating system. The metrics are provided to the load

balancer interface to be used when choosing which node the requests should be sent

62

GreenLAC

Edge Nodes

Edge ...

Controller Monitor

Metrics

AWS CoreEdge Edge

IoT Device

Reverse ProxyLoad Balancer

Forwards

Hosting

OS

Forwards

Request

Figure 4.3: Architecture of the GreenLAC component.

to. By default, GreenLAC fetches the average utilization of CPU and memory each

second, and it aggregates them by one-minute intervals. However, this configuration

is changeable.

Load Balancer: The load balancing policy is applied, and the request is sent to

the controller to be distributed accordingly.

Controller: The requests are distributed according to the predefined target node.

The controller is also responsible for identifying and handling failures when sending

requests to other neighbour nodes. It has a fallback service that redirects requests

63

that are rejected by an edge node to the core or in case of an error, i.e., HTTP

response code 5.x.x. All steps are logged, and users can check the real-time log with

the provided AWS Greengrass log file.

4.2.2 Load Balancing Policies

GreenLAC has four load balancing policies to be used for edge computing deploy-

ments. Users can also implement customized policies using the generic interface

provided. The algorithm 1 shows two of these policies. Requests can be forwarded to

the core and edges based on the following policies:

Edge-Core-PC: The Edge-Core Priority Core policy is the default algorithm used

by GreenLAC. As shown on Algorithm 1, requests are sent to the core whenever the

local edge reaches its saturation point.

Edge-Core-PE: With The Edge-Core Priority Edge policy users can choose to

use local and remote edges for distributing requests. GreenLAC will send requests to

the multiple edges defined in the configuration file using the Round-robin scheduling

algorithm whenever it needs to redistribute requests. In this strategy, the core is never

used for processing requests, which guarantees the privacy of the processed data.

Core: All requests are forwarded to the core when using this policy.

Edge: All requests are forwarded to the local edge when using this policy.

4.3 Experimental Evaluation

We conducted two different experiments to evaluate the performance of GreenLAC

for workload redistribution and resource management on edge-core architectures. In

order to evaluate the performance of our component, we created a network of virtual

IoT sensors using the Locust benchmark tool, and we analyzed the performance

of our component with an IoT application running on a single edge node and on

multiple edge nodes using an embedded system. The IoT application used is the

Image Classifier 230 presented on section 3.2.4, and all the experiments are openly

64

Algorithm 1 Load balancer policies

Input: cpucurrent,memcurrent, cpu MAX ,mem MAX

Input: remoteEdgesList
Output: node target
1: if cpucurrent > cpu MAX or memcurrent > mem MAX then
2: should scale← True;
3: else
4: should scale← False;
5: end if
6: if should scale = True then
7: if policy = Edge− Core− PC then
8: target← core;
9: end if
10: if policy = Edge− Core− PE then
11: target← roundRobin(remoteEdgesList);
12: end if
13: else
14: target← local edge;
15: end if
16: return target

accessible on GitHub5.

4.3.1 Single Edge Deployment

We deployed the GreenLAC component on a single edge node, and evaluated QoS

metrics such as the 95th percentile and the average response time as well as the error

rate.

Experimental Setup

We created the architecture shown in figure 4.1 which consists of the deployment of

the Image Classifier 230 on one edge node and in the core cloud. The edge node is an

EC2 instance with 4GB of memory and 2vCPUs running the Ubuntu OS created in

the AWS region ca-central-1. We deployed AWS Greengrass Core at the edge node,

and created one single AWS Lambda using the ZIP deployment of the Image Classifier

230 in the AWS Console. We then deployed it in the core in the AWS region us-east-

5https://github.com/pacslab/GreenLAC/tree/main/experiments

65

https://github.com/pacslab/GreenLAC/tree/main/experiments

1, and at the edge using the AWS Greengrass Console. We invoke the Lambdas in

the AWS core using the AWS API Gateway through a RESTful API. The Lambda

concurrency limit of both the local edge and AWS core was set to 100. For the IoT

sensors, we simulated a set of smart sensors that send HTTP requests with a JPEG

image of dimensions 430× 500 pixels for a 10-minute period. The workload used is a

sequence of 3 consecutive linear increases and then a random pattern as demonstrated

in figure 4.4(a). The load balancing policy was the Edge-Core-PC, and the buffer size

was set to 5 concurrent requests. Finally, the CPU and memory threshold of the EC2

edge was set to 40%.

Experimental Results and Discussion

GreenLAC enabled the execution of the same AWS Lambda on both the edge node

and the core cloud. Figure 4.4 shows the results of running the GreenLAC component

on the EC2 edge. When we analyze the average and 95th percentile response time

(figure 4.4(b)) of t = 50s, we can notice the effect of the cold start delay of the

AWS Lambda on the first requests. Note that the CPU utilization of the EC2 edge

(figure 4.4(c)) is kept at around 40% during all the time of the experiment. If we

analyze the CPU utilization, response time and workload at t = 120s and t = 280s,

we can see that the workload increased around 2.4× while the CPU utilization and

95th percentile response time was roughly the same at 39% and 330ms, respectively.

GreenLAC was able to keep the same QoS metrics and hardware constraints because

it sent part of the requests to be processed in the AWS core cloud.

The efficiency of GreenLAC is once again validated when we analyze the minimum

and maximum CPU utilization and workload after t = 105s. These figures are 32.5%

and 45.5% for the CPU utilization and 4 req/s and 12.6 req/s for the load. The

average CPU utilization for this period was 40.9%, which demonstrates the efficacy

of GreenLAC at keeping the desired hardware constraints at the edge. It achieved this

by forwarding most of the requests to the AWS core. Figure 4.5 shows the number of

66

Edge Deployment

0

2

4

6

8

10

12

14

R
e

q
u

e
s
ts

/s

(a)

0

100

200

300

400

500

600

700

R
e
s
p
o
n

s
e
 T

im
e
 (

m
s
)

(b)
Average Response Time

95th Percentile

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(c)

0

1

2

3

4

5

6

7

B
u
ff
e

r
S

iz
e
 (

re
q

)

(d)

0 100 200 300 400 500 600

Time (s)

0

2

4

6

8

10

12

#
 o

f
R

e
je

c
te

d
 R

e
q
u
e
s
ts

(e)

Figure 4.4: Experimental results for the single edge deployment.

67

requests processed. Note that approximately 57% of the total requests were sent to

the core cloud. This allowed the extension of the edge processing capabilities without

affecting the QoS metrics.

Edge EC2 AWS Core
0

1000

2000

3000

4000

5000

6000

#
 o

f
R

e
q

u
e
s
ts

Figure 4.5: Request distribution for the single edge deployment.

Another important feature of GreenLAC is the concurrent request customization

feature. Figure 4.4(d) shows the current buffer size, and figure 4.4(e) shows the num-

ber of requests that were rejected due to the maximum concurrent request constraints.

Note that GreenLAC rejected requests to avoid resource starvation at the edge node.

For this experiment, whenever the buffer size reaches more than 5 requests in the

queue, GreenLAC starts to reject the following requests with the service unavail-

able error (HTTP code 503). In total, 11 requests were rejected and the maximum

value of the buffer size was 6 requests. This demonstrated the importance of having

controlling mechanisms to avoid unexpected server errors.

4.3.2 IoT Deployment

We used AWS Greengrass in combination with GreenLAC in an edge node running in

the small single-board computer Raspberry Pi, and another remote edge node running

on an EC2 instance.

68

Experimental Setup

We created the architecture shown in figure 4.2 which consists of the deployment

of the Image Classifier 230 on two edge nodes and in the core cloud. The first edge

node, named EC2 edge, is an EC2 instance with 4GB of memory and 2vCPUs running

the Ubuntu OS in the AWS region ca-central-1. The second edge node, named Pi

edge, is a Raspberry Pi 2 Model B with 1GB of memory and 4vCPUs running the

Raspbian Buster OS hosted on a private cloud in Canada. We deployed the AWS

Greengrass Core and the AWS Lambdas as explained in the previous experiment.

The Lambda concurrency limit of both the edges and AWS core was also set to

100. For the IoT sensors, we simulated the same client configuration described in

the previous experiment. The workload used, however, is a sequence of 2 consecutive

linear increases and then a random pattern as demonstrated in figure 4.6(a). The

buffer size was set to 100 concurrent requests. The load balancing policy of the Pi

edge was the Edge-Core-PE while the EC2 edge was set to Edge-Core-PC. This means

that the Pi Edge can send requests to the EC2 edge and to the core, whereas the EC2

edge can only send requests to the core. Finally, the CPU and memory threshold of

the EC2 edge was set to 40% and the CPU utilization limit of the Pi edge was set to

20%. Due to the limited memory available in the Pi edge, the memory threshold was

set to 90%.

Experimental Results and Discussion

Once again, GreenLAC was able to execute AWS Lambdas on both the edge nodes

and the core cloud. Figure 4.6 shows the results of running the GreenLAC component

on the EC2 and Pi Edges. Unlike the performance seen with the previous experiment,

when we use an embedded system for edge-core deployments, the QoS metrics are

heavily impacted due to the hardware limitations of the Pi edge. However, when

we use GreenLAC to forward part of the load to a more robust edge node, we are

able to increase the overall processing capabilities of the embedded hardware. This

69

IoT Deployment

0

2

4

6

8

10

R
e

q
u

e
s
ts

/s

(a)

0

5

10

15

20

25

30

R
e
s
p

o
n

s
e
 T

im
e
 (

s
)

(b)
Average Response Time

95th Percentile

0 100 200 300 400 500 600

Time (s)

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(c)

Edge Pi

Edge EC2

Figure 4.6: Experimental results for the IoT deployment.

is especially true when we analyze both edge nodes under their maximum load at

t = 583s. This point is important because requests were being processed on all edges

and the core cloud simultaneously. The arrival rate reached its peak of 9.4 req/s while

the CPU utilization of the Pi and EC2 edge nodes were approximately 21% and 45%,

respectively. This shows the efficacy of GreenLAC in keeping the desired hardware

constraints even when the system is under maximum load. For this experiment, none

of the requests were rejected and the buffer size never reached its maximum capacity.

We can see a better picture of the performance of GreenLAC when we analyze

the number of requests processed by each node on figure 4.7. We can see that the

majority of the requests sent to the Pi edge, approximately 72.5%, were processed in

70

Edge Pi Edge EC2 AWS Core
0

200

400

600

800

1000

1200

#
 o

f
R

e
q

u
e
s
ts

Figure 4.7: Request distribution for the IoT deployment.

the EC2 edge, followed by the AWS core with 20.5%, and lastly the Pi edge itself with

only 7% of the requests. As a result of this dynamic request distribution, GreenLAC

was able to keep the average CPU utilization of the Pi edge at 19.5% after t = 300s.

4.4 Related Work

Many studies have proposed serverless platforms for edge computing and IoT. In [67],

the authors propose a new approach for edge computing named SEP by extending

OpenWhisk — a state-of-the-art FaaS platform - for addressing latency-sensitive ap-

plications. Although the approach taken by the authors is innovative, it requires

the use of Docker and other complex software such as Kafka, which makes it un-

suitable for IoT-based edge computing environments. Apolo [68] and LaSS [69] are

also serverless computing frameworks for edge computing which relay on Docker and

OpenWhisk (for [69]). While they perform the orchestration of serverless functions,

including AWS Lambdas, in the edge and core nodes, they are complex and require

extra integration and control on the infrastructure. GreenLAC, on the other hand, is

integrated with AWS Greengrass and it does not require any extra systems but the

component itself which can be deployed using the AWS Console or CLI.

Recent studies investigated the use of serverless computing platforms for microcon-

71

trollers and IoT devices at the edge. µActor is proposed on [70] to address the com-

putations challenges in the entire leaf-edge-cloud continuum. They use lightweight

and long-lived stateful objects that communicate via message passing that can be

executed by process virtual machines. Even though these agents can be used with

IoT devices, they also need to be deployed in the core cloud and unlike GreenLAC,

there is no out-of-the-box integration with AWS or AWS Lambda without the instal-

lation of extra components in the core cloud. Another edge computing architecture

is proposed on [71] with the introduction of a completely new network architecture

named Information-Centric Networking (ICN). The ICN strategy is to acquire hard-

ware and network information for calculating the best interface to forward requests

to the appropriate edge server achieve load balancing. Even though the authors on

[71] validate their framework on a serverless application running on both robust edge

nodes and Raspberry Pi nodes, ICN is a non-trivial network implementation that

requires extra software and infrastructure resources to be implemented.

Some frameworks for deploying and scaling AWS Lambda at the edge with AWS

Greengrass were proposed on [64]–[66]. CEVAS was proposed on [64], and it is a new

serverless infrastructure paradigm for online video analysis orchestration of the cloud

and edge resources based on the resource demand and cloud cost. While CEVAS and

GreenLAC share the same orchestration mechanisms for deploying AWS Lambdas at

the edge nodes and core cloud through AWS Greengrass, CEVAS’ controller requires

high CPU usage which poses a challenge when using it with microcontrollers or low

processing power edge nodes. István et al. propose on [65] and [66] the automated

deployment and dynamic reconfiguration of serverless functions at either the edge or

cloud using AWS Greengrass. Although their framework holds a great promise for

the future of edge serverless computing, it is not open source and there is no further

documentation on how users can extend it to generic applications. GreenLAC, in

contrast, is openly available and it works with both AWS Lambda and container-

based microservices with Docker and ECS.

72

4.5 Conclusion

In this chapter, we presented and evaluated GreenLAC which is an AWS Greengrass

component for redistributing load across multiple edge nodes and the core cloud ac-

cording to customized load balancing policies. We analyzed and evaluated the deploy-

ment of a real-world IoT serverless application on both edge-core deployments. The

proposed component can be used to extend the processing capabilities of hardware-

restricted edges nodes to more robust edges nodes and the core cloud. It can also

be deployed in combination with embedded systems such as Raspberry Pi and local

edges running AWS Greengrass Core. Preliminary results show that GreenLAC en-

ables IoT developers to deploy and use their serverless functions on multiple nodes

simultaneously.

73

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we addressed three main areas of cloud computing: scaling cloud sys-

tems, serverless computing and edge computing. More specifically, we focused on

improving the performance, reducing the cost and mitigating some of the challenges

present in cloud computing. As a result, we provide to the research community and

the industry two open-source solutions as well as invaluable insights regarding server-

less platforms.

First, in Chapter 2, we proposed an autoscaler that leverages burstable instances

on the Google Cloud for scaling Google Compute Engines which achieved promising

results by replacing some of the traditional instances with burstable instances. Pre-

vious studies have shown that this strategy is efficient in reducing the cost of cloud

systems, and we presented the first open-source and fully-integrated autoscaler for

Google Cloud.

Secondly, in Chapter 3, we addressed one of the biggest open challengers on server-

less applications, the cold start delay. By using application and platform knowledge,

we presented guidelines that developers and cloud managers can adopt to mitigate

this issue. We investigated the impacts caused by the runtime language, memory

allocation and function package size in the initialization time of AWS Lambda when

using the two deployment types available nowadays.

74

Finally, in Chapter 4, we developed GreenLAC, which is an open-source compo-

nent for AWS Greengrass that allows local edge applications to leverage cloud and

remote edge resources for data processing. It enables load redistributing across mul-

tiple edge nodes and the core cloud according to customized load balancing policies.

Preliminary results show promising potential for limited embedded edge nodes and

latency-sensitive IoT applications.

5.2 Contributions

In this research, we aimed at providing tools and insights that can help improve

the performance, cost, and efficiency of cloud computing platforms. The primary

contributions of this work can be listed as follows:

• Design and development of BIAS Autoscaler, a highly-customizable autoscaler

for Google Cloud.

• Provide in-depth analysis on the different deployment strategies of AWS Lambda.

• Design and development of GreenLAC, a dynamic load balancer for edge com-

puting and IoT systems.

5.3 Future Work

The studies of this thesis open up several opportunities for future research.

• Make BIAS Autoscaler fully compatible with AWS using a customized load

balancer. Also, proposing a performance modelling of burstable instances on

GCP would be of utmost importance. Many models have been developed for

the token-like system on AWS, but no study performed analytical modelling of

burstable Google Compute Engines on Google Cloud.

75

• Launch an open-source benchmark framework to allow the automatic perfor-

mance characterization of workloads for AWS Lambda using the data acquired

from our analysis.

• Submit the source code of GreenLAC to the AWS Greengrass repository on

GitHub to make this component available to the industry through the AWS

Console.

76

Bibliography

[1] A. W. Services. (2020). “Hybrid cloud the most popular deployment path -
study,” [Online]. Available: https://datacenternews.asia/story/hybrid-cloud-
the-most-popular-deployment-path-study (visited on 02/14/2022).

[2] M. Azure. (2022). “What is cloud computing?” [Online]. Available: https://
azure.microsoft.com/en-us/overview/what- is- cloud-computing/ (visited on
03/02/2022).

[3] G. Cloud. (2022). “Cloud functions,” [Online]. Available: https://cloud.google.
com/functions (visited on 02/14/2022).

[4] M. Azure. (2022). “Azure functions,” [Online]. Available: https://azure.microsoft.
com/en-us/services/functions/ (visited on 02/14/2022).

[5] A. W. Services. (2022). “Aws lambda,” [Online]. Available: https : / / aws .
amazon.com/lambda/ (visited on 02/14/2022).

[6] D. Prot. (2022). “Internet of things statistics for 2022 - taking things apart,”
[Online]. Available: https://dataprot.net/statistics/iot-statistics/ (visited on
02/14/2022).

[7] A. W. Services. (2021). “Burstable performance instances,” [Online]. Avail-
able: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-
performance-instances.html (visited on 04/18/2021).

[8] G. Cloud. (2021). “Shared-core machine types,” [Online]. Available: https :
//cloud.google .com/compute/docs/machine- types#sharedcore (visited on
04/18/2021).

[9] M. Azure. (2021). “B-series burstable virtual machine sizes,” [Online]. Available:
https://docs.microsoft .com/en-us/azure/virtual-machines/sizes- b- series-
burstable (visited on 04/18/2021).

[10] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and R. Bian-
chini, “Resource central: Understanding and predicting workloads for improved
resource management in large cloud platforms,” in Proceedings of the 26th Sym-
posium on Operating Systems Principles, ser. SOSP ’17, Shanghai, China: As-
sociation for Computing Machinery, 2017, pp. 153–167, isbn: 9781450350853.
doi: 10.1145/3132747.3132772. [Online]. Available: https://doi.org/10.1145/
3132747.3132772.

77

https://datacenternews.asia/story/hybrid-cloud-the-most-popular-deployment-path-study
https://datacenternews.asia/story/hybrid-cloud-the-most-popular-deployment-path-study
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/
https://cloud.google.com/functions
https://cloud.google.com/functions
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://dataprot.net/statistics/iot-statistics/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://cloud.google.com/compute/docs/machine-types#sharedcore
https://cloud.google.com/compute/docs/machine-types#sharedcore
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772

[11] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Toward energy-efficient
cloud computing: Prediction, consolidation, and overcommitment,” IEEE Net-
work, vol. 29, no. 2, pp. 56–61, 2015. doi: 10.1109/MNET.2015.7064904.

[12] A. W. Services. (2021). “Amazon ec2 on-demand pricing,” [Online]. Available:
https : //aws . amazon . com/ec2/pricing/on - demand/?nc1=h ls (visited on
04/18/2021).

[13] G. Cloud. (2021). “Compute engine on-demand pricing,” [Online]. Available:
https : / / cloud . google . com / compute / all - pricing # sharedcore (visited on
04/18/2021).

[14] ——, (2021). “Cloud load balancing,” [Online]. Available: https://cloud.google.
com/load-balancing (visited on 03/14/2021).

[15] A. F. Baarzi, T. Zhu, and B. Urgaonkar, “Burscale: Using burstable instances
for cost-effective autoscaling in the public cloud,” in Proceedings of the ACM
Symposium on Cloud Computing, ser. SoCC ’19, Santa Cruz, CA, USA: As-
sociation for Computing Machinery, 2019, pp. 126–138, isbn: 9781450369732.
doi: 10.1145/3357223.3362706. [Online]. Available: https://doi.org/10.1145/
3357223.3362706.

[16] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Cedule: A scheduling framework
for burstable performance in cloud computing,” in 2018 IEEE International
Conference on Autonomic Computing (ICAC), 2018, pp. 141–150. doi: 10.1109/
ICAC.2018.00024.

[17] G. Cloud. (2021). “Google compute engine,” [Online]. Available: https://cloud.
google.com/compute (visited on 04/12/2021).

[18] ——, (2021). “Google kubernetes engine,” [Online]. Available: https://cloud.
google.com/kubernetes-engine (visited on 04/15/2021).

[19] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch, “Dis-
tributed, robust auto-scaling policies for power management in compute in-
tensive server farms,” in 2011 Sixth Open Cirrus Summit, 2011, pp. 1–5. doi:
10.1109/OCS.2011.6.

[20] A. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upadhyay, and A.
Gandhi, “Ensure: Efficient scheduling and autonomous resource management in
serverless environments,” in 2020 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS), 2020, pp. 1–10. doi: 10 .
1109/ACSOS49614.2020.00020.

[21] H. .-. Lin and C. S. Raghavendra, “An analysis of the join the shortest queue
(jsq) policy,” in [1992] Proceedings of the 12th International Conference on
Distributed Computing Systems, 1992, pp. 362–366. doi: 10.1109/ICDCS.1992.
235020.

[22] M. Harchol-Balter, Performance modeling and design of computer systems:
queueing theory in action. Cambridge University Press, 2013.

78

https://doi.org/10.1109/MNET.2015.7064904
https://aws.amazon.com/ec2/pricing/on-demand/?nc1=h_ls
https://cloud.google.com/compute/all-pricing#sharedcore
https://cloud.google.com/load-balancing
https://cloud.google.com/load-balancing
https://doi.org/10.1145/3357223.3362706
https://doi.org/10.1145/3357223.3362706
https://doi.org/10.1145/3357223.3362706
https://doi.org/10.1109/ICAC.2018.00024
https://doi.org/10.1109/ICAC.2018.00024
https://cloud.google.com/compute
https://cloud.google.com/compute
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://doi.org/10.1109/OCS.2011.6
https://doi.org/10.1109/ACSOS49614.2020.00020
https://doi.org/10.1109/ACSOS49614.2020.00020
https://doi.org/10.1109/ICDCS.1992.235020
https://doi.org/10.1109/ICDCS.1992.235020

[23] Y. Jiang, M. Shahrad, D. Wentzlaff, D. H. K. Tsang, and C. Joe-Wong, “Burstable
instances for clouds: Performance modeling, equilibrium analysis, and revenue
maximization,” IEEE/ACM Transactions on Networking, vol. 28, no. 6, pp. 2489–
2502, 2020. doi: 10.1109/TNET.2020.3015523.

[24] R. Pinciroli, A. Ali, F. Yan, and E. Smirni, “Cedule+: Resource management
for burstable cloud instances using predictive analytics,” IEEE Transactions
on Network and Service Management, vol. 18, no. 1, pp. 945–957, 2021. doi:
10.1109/TNSM.2020.3039942.

[25] V. Podolskiy, A. Jindal, and M. Gerndt, “Iaas reactive autoscaling performance
challenges,” in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), 2018, pp. 954–957. doi: 10.1109/CLOUD.2018.00144.

[26] M. N. A. H. Khan, Y. Liu, H. Alipour, and S. Singh, “Modeling the autoscaling
operations in cloud with time series data,” in 2015 IEEE 34th Symposium on
Reliable Distributed Systems Workshop (SRDSW), 2015, pp. 7–12. doi: 10 .
1109/SRDSW.2015.20.

[27] A. Abdel Khaleq and I. Ra, “Agnostic approach for microservices autoscal-
ing in cloud applications,” in 2019 International Conference on Computational
Science and Computational Intelligence (CSCI), 2019, pp. 1411–1415. doi: 10.
1109/CSCI49370.2019.00264.

[28] A. A. Khaleq and I. Ra, “Intelligent autoscaling of microservices in the cloud
for real-time applications,” IEEE Access, vol. 9, pp. 35 464–35 476, 2021. doi:
10.1109/ACCESS.2021.3061890.

[29] C. Wang, B. Urgaonkar, N. Nasiriani, and G. Kesidis, “Using burstable instances
in the public cloud: Why, when and how?” Proc. ACM Meas. Anal. Comput.
Syst., vol. 1, no. 1, Jun. 2017. doi: 10.1145/3084448. [Online]. Available: https:
//doi.org/10.1145/3084448.

[30] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “It’s not a sprint, it’s a marathon:
Stretching multi-resource burstable performance in public clouds (industry track),”
in Proceedings of the 20th International Middleware Conference Industrial Track,
ser. Middleware ’19, Davis, CA, USA: Association for Computing Machinery,
2019, pp. 36–42, isbn: 9781450370417. doi: 10.1145/3366626.3368130. [Online].
Available: https://doi.org/10.1145/3366626.3368130.

[31] I. Cloud. (2021). “Iaas vs. paas vs. saas,” [Online]. Available: https://www.
ibm.com/cloud/learn/iaas-paas-saas (visited on 02/15/2022).

[32] ——, (2022). “Ibm cloud functions,” [Online]. Available: https://cloud.ibm.
com/functions/ (visited on 03/24/2022).

[33] A. W. Services. (2020). “Aws lambda - container image support,” [Online].
Available: https://aws.amazon.com/blogs/aws/new-for-aws-lambda-container-
image-support (visited on 02/14/2022).

79

https://doi.org/10.1109/TNET.2020.3015523
https://doi.org/10.1109/TNSM.2020.3039942
https://doi.org/10.1109/CLOUD.2018.00144
https://doi.org/10.1109/SRDSW.2015.20
https://doi.org/10.1109/SRDSW.2015.20
https://doi.org/10.1109/CSCI49370.2019.00264
https://doi.org/10.1109/CSCI49370.2019.00264
https://doi.org/10.1109/ACCESS.2021.3061890
https://doi.org/10.1145/3084448
https://doi.org/10.1145/3084448
https://doi.org/10.1145/3084448
https://doi.org/10.1145/3366626.3368130
https://doi.org/10.1145/3366626.3368130
https://www.ibm.com/cloud/learn/iaas-paas-saas
https://www.ibm.com/cloud/learn/iaas-paas-saas
https://cloud.ibm.com/functions/
https://cloud.ibm.com/functions/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-container-image-support
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-container-image-support

[34] J. Manner, M. Endreß, T. Heckel, and G. Wirtz, “Cold start influencing factors
in function as a service,” in 2018 IEEE/ACM International Conference on Util-
ity and Cloud Computing Companion (UCC Companion), 2018, pp. 181–188.
doi: 10.1109/UCC-Companion.2018.00054.

[35] E. Oakes, L. Yang, K. Houck, T. Harter, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Pipsqueak: Lean lambdas with large libraries,” in 2017 IEEE
37th International Conference on Distributed Computing Systems Workshops
(ICDCSW), IEEE, 2017, pp. 395–400.

[36] H. Puripunpinyo and M. Samadzadeh, “Effect of optimizing java deployment
artifacts on aws lambda,” in 2017 IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS), IEEE, 2017, pp. 438–443.

[37] I. Stancin and A. Jovic, “An overview and comparison of free python libraries for
data mining and big data analysis,” in 2019 42nd International Convention on
Information and Communication Technology, Electronics and Microelectronics
(MIPRO), 2019, pp. 977–982. doi: 10.23919/MIPRO.2019.8757088.

[38] T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin, and H. Chen,
“Characterizing serverless platforms with serverlessbench,” in Proceedings of the
11th ACM Symposium on Cloud Computing, ser. SoCC ’20, Virtual Event, USA:
Association for Computing Machinery, 2020, pp. 30–44, isbn: 9781450381376.
doi: 10.1145/3419111.3421280. [Online]. Available: https://doi.org/10.1145/
3419111.3421280.

[39] P. Vahidinia, B. Farahani, and F. S. Aliee, “Cold start in serverless comput-
ing: Current trends and mitigation strategies,” in 2020 International Confer-
ence on Omni-layer Intelligent Systems (COINS), 2020, pp. 1–7. doi: 10.1109/
COINS49042.2020.9191377.

[40] Denodo. (2020). “Denodo global cloud survey 2020,” [Online]. Available: https:
//www.denodo.com/en/document/whitepaper/denodo-global-cloud-survey-
2020 (visited on 03/02/2022).

[41] Datadog. (2021). “The state of serverless,” [Online]. Available: https://www.
datadoghq.com/state-of-serverless/ (visited on 01/21/2022).

[42] E. Şamdan. (2018). “Dealing with cold starts in aws lambda,” [Online]. Avail-
able: https://medium.com/thundra/dealing-with-cold-starts-in-aws-lambda-
a5e3aa8f532 (visited on 01/10/2022).

[43] E. Samdan. (2017). “A cloud guru news,” [Online]. Available: https://acloudguru.
com/blog/engineering/does-coding-language-memory-or-package-size-affect-
cold-starts-of-aws-lambda (visited on 01/10/2022).

[44] A. W. Services. (2018). “Become a serverless black belt - optimizing your server-
less applications,” [Online]. Available: https://pages.awscloud.com/Become-
a-Serverless-Black-Belt---Optimizing-Your-Serverless-Applications%5C 0205-
SR%5C OD.html (visited on 02/14/2022).

80

https://doi.org/10.1109/UCC-Companion.2018.00054
https://doi.org/10.23919/MIPRO.2019.8757088
https://doi.org/10.1145/3419111.3421280
https://doi.org/10.1145/3419111.3421280
https://doi.org/10.1145/3419111.3421280
https://doi.org/10.1109/COINS49042.2020.9191377
https://doi.org/10.1109/COINS49042.2020.9191377
https://www.denodo.com/en/document/whitepaper/denodo-global-cloud-survey-2020
https://www.denodo.com/en/document/whitepaper/denodo-global-cloud-survey-2020
https://www.denodo.com/en/document/whitepaper/denodo-global-cloud-survey-2020
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://medium.com/thundra/dealing-with-cold-starts-in-aws-lambda-a5e3aa8f532
https://medium.com/thundra/dealing-with-cold-starts-in-aws-lambda-a5e3aa8f532
https://acloudguru.com/blog/engineering/does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda
https://acloudguru.com/blog/engineering/does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda
https://acloudguru.com/blog/engineering/does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda
https://pages.awscloud.com/Become-a-Serverless-Black-Belt---Optimizing-Your-Serverless-Applications%5C_0205-SR%5C_OD.html
https://pages.awscloud.com/Become-a-Serverless-Black-Belt---Optimizing-Your-Serverless-Applications%5C_0205-SR%5C_OD.html
https://pages.awscloud.com/Become-a-Serverless-Black-Belt---Optimizing-Your-Serverless-Applications%5C_0205-SR%5C_OD.html

[45] D. Ustiugov, T. Amariucai, and B. Grot, “Analyzing tail latency in serverless
clouds with stellar,” English, in 2021 IEEE International Symposium on Work-
load Characterization (IISWC’21), 2021 IEEE International Symposium on
Workload Characterization, IISWC 2021 ; Conference date: 07-11-2021 Through
09-11-2021, United States: Institute of Electrical and Electronics Engineers
(IEEE), Sep. 2021. [Online]. Available: http://www.iiswc.org/iiswc2021/index.
html.

[46] S. Raschka and V. Mirjalili, “Python machine learning: Machine learning and
deep learning with python,” Scikit-Learn, and TensorFlow. Second edition ed,
2017.

[47] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al., “Scipy 1.0:
Fundamental algorithms for scientific computing in python,” Nature methods,
vol. 17, no. 3, pp. 261–272, 2020. doi: https://doi.org/10.1038/s41592-019-
0686-2.

[48] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V.
Hilt, “Sand: Towards high-performance serverless computing,” in 2018 Usenix
Annual Technical Conference USENIX ATC 18), 2018, pp. 923–935.

[49] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and H. Chen, “Cat-
alyzer: Sub-millisecond startup for serverless computing with initialization-less
booting,” in Proceedings of the Twenty-Fifth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. New
York, NY, USA: Association for Computing Machinery, 2020, pp. 467–481, isbn:
9781450371025. [Online]. Available: https://doi.org/10.1145/3373376.3378512.

[50] K. Solaiman and M. A. Adnan, “Wlec: A not so cold architecture to miti-
gate cold start problem in serverless computing,” in 2020 IEEE International
Conference on Cloud Engineering (IC2E), 2020, pp. 144–153. doi: 10.1109/
IC2E48712.2020.00022.

[51] W. Ling, L. Ma, C. Tian, and Z. Hu, “Pigeon: A dynamic and efficient serverless
and faas framework for private cloud,” in 2019 International Conference on
Computational Science and Computational Intelligence (CSCI), 2019, pp. 1416–
1421. doi: 10.1109/CSCI49370.2019.00265.

[52] D. Bermbach, A.-S. Karakaya, and S. Buchholz, “Using application knowledge
to reduce cold starts in faas services,” in Proceedings of the 35th Annual ACM
Symposium on Applied Computing. New York, NY, USA: Association for Com-
puting Machinery, 2020, pp. 134–143, isbn: 9781450368667. [Online]. Available:
https://doi.org/10.1145/3341105.3373909.

[53] D. Kelly, F. G. Glavin, and E. Barrett, Serverless computing: Behind the scenes
of major platforms, 2020. arXiv: 2012.05600 [cs.DC].

81

http://www.iiswc.org/iiswc2021/index.html
http://www.iiswc.org/iiswc2021/index.html
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1109/IC2E48712.2020.00022
https://doi.org/10.1109/IC2E48712.2020.00022
https://doi.org/10.1109/CSCI49370.2019.00265
https://doi.org/10.1145/3341105.3373909
https://arxiv.org/abs/2012.05600

[54] A. Tariq, A. Pahl, S. Nimmagadda, E. Rozner, and S. Lanka, “Sequoia: En-
abling quality-of-service in serverless computing,” in Proceedings of the 11th
ACM Symposium on Cloud Computing, ser. SoCC ’20, Virtual Event, USA: As-
sociation for Computing Machinery, 2020, pp. 311–327, isbn: 9781450381376.
doi: 10.1145/3419111.3421306. [Online]. Available: https://doi.org/10.1145/
3419111.3421306.

[55] S. Horovitz, R. Amos, O. Baruch, T. Cohen, T. Oyar, and A. Deri, “Faastest -
machine learning based cost and performance faas optimization: 15th interna-
tional conference, gecon 2018, pisa, italy, september 18–20, 2018, proceedings,”
in. Jan. 2019, pp. 171–186, isbn: 978-3-030-13341-2. doi: 10.1007/978-3-030-
13342-9 15.

[56] T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin, and H. Chen,
“Characterizing serverless platforms with serverlessbench,” in Proceedings of the
11th ACM Symposium on Cloud Computing, ser. SoCC ’20, Virtual Event, USA:
Association for Computing Machinery, 2020, pp. 30–44, isbn: 9781450381376.
doi: 10.1145/3419111.3421280. [Online]. Available: https://doi.org/10.1145/
3419111.3421280.

[57] J. Jarachanthan, L. Chen, F. Xu, and B. Li, “Amps-inf: Automatic model parti-
tioning for serverless inference with cost efficiency,” in 50th International Con-
ference on Parallel Processing. New York, NY, USA: Association for Computing
Machinery, 2021, isbn: 9781450390682. [Online]. Available: https://doi.org/10.
1145/3472456.3472501.

[58] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann, N. Herbst,
C. L. Abad, and A. Iosup, “Serverless applications: Why, when, and how?”
IEEE Software, vol. 38, no. 1, pp. 32–39, 2021. doi: 10.1109/MS.2020.3023302.

[59] J. Manner, M. Endreß, T. Heckel, and G. Wirtz, “Cold start influencing fac-
tors in function as a service,” in 2018 IEEE/ACM International Conference
on Utility and Cloud Computing Companion (UCC Companion), IEEE, 2018,
pp. 181–188.

[60] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb, “Sur-
vey on multi-access edge computing for internet of things realization,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 4, pp. 2961–2991, 2018.

[61] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-edge-cloud or-
chestrated network computing paradigms: Transparent computing, mobile edge
computing, fog computing, and cloudlet,” ACM Computing Surveys (CSUR),
vol. 52, no. 6, pp. 1–36, 2019.

[62] A. W. Services. (2022). “Aws iot greengrass,” [Online]. Available: https://aws.
amazon.com/greengrass/ (visited on 02/28/2022).

[63] M. Azure. (2019). “Iot on the edge and in the cloud.,” [Online]. Available:
https://devintxcontent.blob.core.windows.net/showcontent/Speaker%5C%
20Presentations%5C%20Fall%5C%202019/AzureAIConf 2019%5C%20-%5C%
20IoT%5C%20Edge.pdf (visited on 02/28/2022).

82

https://doi.org/10.1145/3419111.3421306
https://doi.org/10.1145/3419111.3421306
https://doi.org/10.1145/3419111.3421306
https://doi.org/10.1007/978-3-030-13342-9_15
https://doi.org/10.1007/978-3-030-13342-9_15
https://doi.org/10.1145/3419111.3421280
https://doi.org/10.1145/3419111.3421280
https://doi.org/10.1145/3419111.3421280
https://doi.org/10.1145/3472456.3472501
https://doi.org/10.1145/3472456.3472501
https://doi.org/10.1109/MS.2020.3023302
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
https://devintxcontent.blob.core.windows.net/showcontent/Speaker%5C%20Presentations%5C%20Fall%5C%202019/AzureAIConf_2019%5C%20-%5C%20IoT%5C%20Edge.pdf
https://devintxcontent.blob.core.windows.net/showcontent/Speaker%5C%20Presentations%5C%20Fall%5C%202019/AzureAIConf_2019%5C%20-%5C%20IoT%5C%20Edge.pdf
https://devintxcontent.blob.core.windows.net/showcontent/Speaker%5C%20Presentations%5C%20Fall%5C%202019/AzureAIConf_2019%5C%20-%5C%20IoT%5C%20Edge.pdf

[64] M. Zhang, F. Wang, Y. Zhu, J. Liu, and Z. Wang, “Towards cloud-edge collab-
orative online video analytics with fine-grained serverless pipelines,” in Proceed-
ings of the 12th ACM Multimedia Systems Conference. New York, NY, USA:
Association for Computing Machinery, 2021, pp. 80–93, isbn: 9781450384346.
[Online]. Available: https://doi.org/10.1145/3458305.3463377.

[65] I. Pelle, F. Paolucci, B. Sonkoly, and F. Cugini, “Latency-sensitive edge/cloud
serverless dynamic deployment over telemetry-based packet-optical network,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 9, pp. 2849–
2863, 2021. doi: 10.1109/JSAC.2021.3064655.

[66] I. Pelle, J. Czentye, J. Dóka, A. Kern, B. P. Gerő, and B. Sonkoly, “Operating
latency sensitive applications on public serverless edge cloud platforms,” IEEE
Internet of Things Journal, vol. 8, no. 10, pp. 7954–7972, 2021. doi: 10.1109/
JIOT.2020.3042428.

[67] L. Baresi and D. Filgueira Mendonça, “Towards a serverless platform for edge
computing,” in 2019 IEEE International Conference on Fog Computing (ICFC),
2019, pp. 1–10. doi: 10.1109/ICFC.2019.00008.

[68] F. Smirnov, C. Engelhardt, J. Mittelberger, B. Pourmohseni, and T. Fahringer,
“Apollo: Towards an efficient distributed orchestration of serverless function
compositions in the cloud-edge continuum,” in Proceedings of the 14th IEEE/ACM
International Conference on Utility and Cloud Computing, ser. UCC ’21, Le-
icester, United Kingdom: Association for Computing Machinery, 2021, isbn:
9781450385640. doi: 10 . 1145 / 3468737 . 3494103. [Online]. Available: https :
//doi.org/10.1145/3468737.3494103.

[69] B. Wang, A. Ali-Eldin, and P. Shenoy, “Lass: Running latency sensitive server-
less computations at the edge,” in Proceedings of the 30th International Sympo-
sium on High-Performance Parallel and Distributed Computing, ser. HPDC ’21,
Virtual Event, Sweden: Association for Computing Machinery, 2021, pp. 239–
251, isbn: 9781450382175. doi: 10.1145/3431379.3460646. [Online]. Available:
https://doi.org/10.1145/3431379.3460646.

[70] R. Hetzel, T. Kärkkäinen, and J. Ott, “Actor: Stateful serverless at the edge,” in
Proceedings of the 1st Workshop on Serverless Mobile Networking for 6G Com-
munications, ser. MobileServerless’21, Virtual, WI, USA: Association for Com-
puting Machinery, 2021, pp. 1–6, isbn: 9781450386036. doi: 10.1145/3469263.
3470828. [Online]. Available: https://doi.org/10.1145/3469263.3470828.

[71] Z. Fan, W. Yang, F. Wu, J. Cao, and W. Shi, “Serving at the edge: An edge
computing service architecture based on icn,” ACM Trans. Internet Technol.,
vol. 22, no. 1, Oct. 2021, issn: 1533-5399. doi: 10 . 1145/3464428. [Online].
Available: https://doi.org/10.1145/3464428.

83

https://doi.org/10.1145/3458305.3463377
https://doi.org/10.1109/JSAC.2021.3064655
https://doi.org/10.1109/JIOT.2020.3042428
https://doi.org/10.1109/JIOT.2020.3042428
https://doi.org/10.1109/ICFC.2019.00008
https://doi.org/10.1145/3468737.3494103
https://doi.org/10.1145/3468737.3494103
https://doi.org/10.1145/3468737.3494103
https://doi.org/10.1145/3431379.3460646
https://doi.org/10.1145/3431379.3460646
https://doi.org/10.1145/3469263.3470828
https://doi.org/10.1145/3469263.3470828
https://doi.org/10.1145/3469263.3470828
https://doi.org/10.1145/3464428
https://doi.org/10.1145/3464428

	Abstract
	Preface
	Acknowledgments
	List of Tables
	List of Figures
	Introduction and Background
	Cloud Computing
	Serverless Computing
	Edge Computing
	Motivation and Objectives
	Thesis Outline

	BIAS Autoscaler: Leveraging Burstable Instances for Cost-Effective Autoscaling on Cloud Systems
	Introduction
	Background
	Burstable Instances
	Google Cloud Platform
	Workload
	Benchmark Test

	BIAS Autoscaler Design
	The Architecture of BIAS Autoscaler
	Scaling Policy

	Evaluation
	Transient Queueing
	Flash Crowd

	Related Work
	Conclusion

	Application Deployment Strategies for Reducing the Cold Start Delay of AWS Lambda
	Introduction
	Methodology
	Language Runtimes and Libraries Used
	Function Deployment Configuration
	Function Response Time Measurement
	Function Workloads Used

	Experimental Evaluation
	Experimental Setup and Data Collection
	Results and Interpretations

	Related Work
	Conclusion

	GreenLAC: Resource-Aware Dynamic Load Balancer for Serverless Edge Computing Platforms with AWS Greengrass
	Introduction
	GreenLAC
	System Architecture
	Load Balancing Policies

	Experimental Evaluation
	Single Edge Deployment
	IoT Deployment

	Related Work
	Conclusion

	Conclusion and Future Work
	Conclusion
	Contributions
	Future Work

	Bibliography

