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Abstract

Microservices have gained substantial importance over the past decades and matured

into one of the fundamental techniques to build performant, cloud-native, and cost-

efficient distributed systems that are scalable and highly available. However, like any

other type of distributed system, there are inherited pain points related to perfor-

mance, cost, and security pertaining to microservice-based distributed systems. For

applications based on serverless microservices, there is no analytical or experimental

tool to enable what-if analysis between performance and cost in a systematic man-

ner. Moreover, production-ready microservice-based systems, e.g., Internet of Things

(IoT), are typically large-scale systems for which we require autonomic management

to enforce the quality attributes such as security and performance.

In this thesis, we address the challenges mentioned above by targeting four research

objectives. More specifically, we propose a solution to help build performant, secure

and optimized microservice-based distributed systems, particularly systems based

on serverless microservices and IoT systems, from three aspects, including service

level agreement (SLA) adherence, performance/cost modeling and optimization, and

autonomic security management.

In the first part of the thesis, we initially formulate the function placement prob-

lem in which function containers are placed on virtual machines (VMs) optimally to

avoid performance degradation due to resource contention. To solve this problem, we

design and evaluate a machine learning-based adaptive function placement algorithm

that Function as a Service (FaaS) platforms can leverage to improve the throughput

of functions and thus enhance SLA adherence without incurring significant overhead.
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The proposed algorithm can predict the performance of the function based on the

workload profile of functions and performance metrics of VMs. As verified by experi-

mental evaluation, the proposed adaptive function placement algorithm could improve

the throughput of serverless functions by 10.35% - 44.89% with negligible overhead.

For performance and cost modeling of applications based on serverless microser-

vices, we first propose a new construct to formally define a serverless application

workflow and then implement analytical models to predict the serverless application’s

average end-to-end response time and cost. Also, we propose a heuristic algorithm

with four greedy strategies to answer two fundamental optimization questions re-

garding performance and cost. The proposed models and algorithms are extensively

evaluated by conducting experimentation on Amazon Web Services (AWS). Our an-

alytical models can predict the performance and cost of serverless applications with

more than 98% accuracy. Also, the optimization algorithm can achieve the optimal

configurations of serverless applications with 97% accuracy on average.

To address security management for microservice-based distributed IoT systems,

we strive to build an autonomic manager that can: 1) Monitor the smart space con-

tinuously. 2) Analyze the context. 3) Plan and execute countermeasures to maintain

the desired level of security. 4) Reduce liability and risks of security breaches. We

follow the microservice architecture pattern and propose a generic ontology named

Secure Smart Space Ontology (SSSO) for describing dynamic contextual information

in security-enhanced smart spaces. Based on SSSO, we build an autonomic security

manager with four layers that continuously monitor the managed spaces, analyze

contextual information and events, and automatically plan and implement adaptive

security policies. As the evaluation, focusing on a current BlackBerry customer prob-

lem, we deploy the proposed autonomic security manager to maintain the security

of a smart conference room with 32 IoT devices and 66 services encapsulated as mi-

croservices. Also, the high performance of the proposed solution is evaluated on a

large-scale deployment with over 1.8 million triples.
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Chapter 1

Introduction and Background

1.1 Distributed Systems

Over the past decades, distributed systems have gained substantial importance and

have a significant impact on architecture design and software development. A dis-

tributed system is a collection of autonomous and interconnected computing elements

working together as a single coherent system to accomplish certain collective tasks [4,

5]. Each computing element, generally referred to as a node, is a hardware device or

a program process, which can work independently from and concurrent with other

computing elements in the system. Such distributed nodes provide great redundancy,

allowing a part of the system may fail without affecting the functionality of the whole

system. Distributed systems may easily scale by adding and removing nodes on de-

mand for better performance and cost. Distributed systems can be heterogeneous,

in which nodes may use various hardware, software components, operating systems,

and communication protocols.

There are numerous use cases for distributed systems. Examples include the World

Wide Web, IoT sensor networks, distributed file systems and databases, smart grids,

cloud computing, and blockchains. With the increasing popularity of distributed sys-

tems, specifically cloud computing, new software design patterns and architectures

have emerged, such as high-availability architectures, microservices, and serverless

computing, dramatically changing the process of application development. While
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distributed systems have the potential for better performance, cost effectiveness, scal-

ability, availability, resilience, parallelism, and fault tolerance, they usually have high

complexity, heterogeneity, and stochasticity. As a result, there are many challeng-

ing issues swirling around the use of distributed systems, such as failure handling,

testing, messaging, consistency guarantees, resource scheduling and orchestration,

performance and cost modeling and optimization, and security management [4–11].

1.2 Cloud Computing: From IaaS to FaaS

Cloud computing is one of the most common use cases of distributed systems and has

drawn tremendous attention from academia and industry over the past decade. It has

become one of the fastest growing industries and research hotspots in recent years,

changing the way of using and managing distributed computing resources, trans-

forming the process of software development, and enabling many groundbreaking

products. The increasing popularity of cloud computing has triggered intense compe-

tition among technology giants, including Amazon, Google, Microsoft, and Alibaba.

They have already become mainstream cloud service providers by launching cloud

platforms, such as Amazon Web Services (AWS), Google Cloud Platform (GCP), Mi-

crosoft Azure, and Alibaba Cloud, to offer diverse cloud services and infrastructures

to the public.

Evolved out of distributed computing and grid computing, cloud computing gener-

ally utilizes virtualized resources backed by large-scale data centers, including CPU,

memory, storage, and network, to offer scalable and practically infinite computing re-

sources with flexible tenancy and pay-as-you-go and near real-time billing manner [12].

In other words, cloud computing systems are usually multi-tenant distributed systems.

Due to their high scalability, high availability, fault-tolerance, pay-as-you-go billing

model, and low management overhead, leveraging cloud solutions has become a natu-

ral way for developers and companies to build, test, and deploy new applications and

services. A large number of businesses are also planning to migrate their services to
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the public or on-premises private cloud.

Today’s cloud computing generally has four paradigms, namely Infrastructure as

a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), and

Function as a Service (FaaS).

IaaS is the most basic and flexible cloud computing model. IaaS providers, such

as Amazon EC2 and Google Cloud Compute Engine, rent out computing resources

together with the storage and network services to customers. While on-demand oper-

ating system (OS) instances in the form of virtual machines (VM) are the primary de-

ployment unit in IaaS, dedicated (bare-metal) machines could also be outsourced [13].

Service providers leverage IaaS to deploy their applications in an environment with

complete control over infrastructure, OS, middleware, dependencies, programming,

data, runtime environment, and applications in an automated way.

PaaS functions at a higher level than IaaS. PaaS providers take responsibility over

OS, middleware, and runtime environment, and rent out the ready-to-use platform

on which customers can develop and deploy their services. As a result, the PaaS

customer can not manage the underlying infrastructure (typically VM and OS) but

has full control over their deployed applications and sometimes limited control of

storage and networking. AWS Elastic Beanstalk and Google App Engine are two

examples of popular PaaS solutions.

SaaS functions at an even higher level than PaaS, providing a ready-to-use pack-

aged application to customers, usually the end-users of the software. SaaS providers

manage nearly everything required for running the hosted application and handle

software maintenance, such as application updates, security patches, and bug fixes,

eliminating the overhead of managing, installing, and using software in the local en-

vironment. End-users can rent and use the service online, slashing the expense of

distributing and using the software. Some of the most common types of SaaS appli-

cations include video conferencing services and cloud storage services.

FaaS is a relatively new type of cloud computing paradigm that allows develop-
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ers to execute event-based functions in the cloud. The function is a chunk of code

that abstracts a part of an application implementing business logic. FaaS providers

take over all the operational responsibilities, such as function deployment, resource

management, scaling, and monitoring. Thus, developers can mainly focus on the

business logic of functions, expediting the application development. Many cloud ser-

vice providers have launched FaaS platforms, including AWS Lambda, Google Cloud

Functions, and Azure Functions.

Development Speed, Focus on Business Logic, Per-second Billing, Easy to Scale
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Figure 1.1: Comparison of different cloud computing models.

For application developers, IaaS, PaaS, and FaaS are three primary cloud mod-

els that they may leverage to develop and deploy their native cloud applications.

Figure 1.1 demonstrates the comparison among different cloud computing models

regarding control, flexibility, operational overhead, development speed, focus on busi-

ness logic, scalability, and billing granularity. Items in the boxes for each paradigm

represent the responsibility that developers should take. As shown in Figure 1.1,

product providers take the most responsibilities from the underlying hardware to the

hosted application when leveraging the on-premise infrastructure. While the onsite
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paradigm usually incurs significant operational overhead, as users have full control of

every single layer in the computing infrastructure, such infrastructure could ensure

data integrity and security in some cases.

By leveraging hypervisor-based virtualization, software-defined networking (SDN),

cloud storage (typically block and file storage), and well-defined application program-

ming interface (API), IaaS providers host and rent out infrastructure components

in the cloud with per-second to per-hour billing models. Customers outsource on-

demand cloud instances, networking, and storage resources with different flavors to

deploy the application while managing OS, middleware, and runtime by themselves.

As presented in Figure 1.1, while the control over resources is somehow limited com-

pared to the on-premise infrastructure, IaaS gives users a high level of flexibility for

customizing the operating system, middleware, and runtime environment for better

fit, which could yield high isolation levels, performance, and availability. Besides, by

launching/removing VMs and changing instance flavors (e.g., vCPU, memory, and

storage), resources can scale horizontally and vertically with lower overhead costs.

PaaS further eliminates the hassle of managing runtime, OS, and underlying in-

frastructure for developers, allowing them to develop and deploy applications on the

platform directly. Most popular PaaS platforms offered by public cloud providers

leverage lightweight container-based virtualization, particularly Docker [14], to de-

ploy the application container that packages up the application together with its

dependencies. Containers can provide isolation and resource allocation characteris-

tics, and can be deployed and removed in seconds in most cases, enabling per-second

billing. By breaking down the application or the system into different components

packaged in different containers and adopting microservice architecture, container-

ization and PaaS platforms could also help developers develop, deploy, refactor, and

scale parts of the application easily, increasing the overall resilience and scalability of

the system [13]. We discuss containers and microservices further in Section 1.3 and

Section 1.4.
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FaaS allows developers to build, execute, and manage stateless and event-driven

functions that abstract parts of the business logic in the cloud. Like container-based

PaaS, FaaS also leverages containers to execute functions, but the containerization,

resource allocation, and infrastructure are fully managed by the service provider.

FaaS platforms take over all the operational responsibilities such as function deploy-

ment, resource management, scaling, and monitoring, allowing developers to focus

on writing business logic (functions). The event-triggered container is easy and fast

to scale in response to incoming traffic and can scale to zero for cost efficiency. The

per-millisecond billing granularity of FaaS can help further reduce the operational

overhead [15]. Regarding flexibility, FaaS customers usually have very limited control

over resources allocated to containers. FaaS providers usually offer other managed

services, such as API gateway, message queue, and workflow coordinator, to help

customers build applications with serverless architecture. In other words, FaaS is

the core of serverless computing. Section 1.5 further discusses the background of

serverless computing.

As illustrated in Figure 1.1, each paradigm represents a different part of cloud

computing with different levels of abstraction, virtualization, control, flexibility, and

management. Different cloud computing paradigms use different management, de-

ployment, control, and virtualization strategies to address different needs in different

scenarios. It is worth acknowledging that these paradigms are co-existent, and there

is no evolutionary relationship among them. Therefore, we do not claim that one

paradigm is necessarily better than another. However, in recent years, there has

been a growing trend in the paradigm of cloud computing shifting from IaaS to FaaS

and serverless for developing cloud-native applications because of the reduced com-

plexity, accelerated development speed, improved dependability, auto-scaling, well-

maintained service level agreement (SLA), and low overhead on infrastructure man-

agement [16, 17].

6



1.3 Containers

Containerization is widely used in cloud computing [18, 19] and in applications with

microservice architecture [20], which is the process of encapsulating source code with

OS, environment variables, dependencies, and libraries required to execute the code

into a lightweight, isolated, ephemeral, and executable container. As containers share

the host kernel and use cgroups and namespaces to achieve lightweight virtualization,

containers only isolate system processes and resources and are easy to deploy, scale,

and migrate. Compared to traditional VMs, containers generally have considerably

lower overhead of runtime management and scaling [21].

Docker is currently one of the most popular containerization solutions [22]. An

application encapsulated by Docker is distributed in the form of a Docker image.

The Docker image is defined through a Dockerfile, which contains all commands and

environment variables required to run the application. When the target application

encapsulated in the image is deployed, an instance of the image is created [23] and is

referred to as the Docker container. Hence, a Docker image is like a snapshot of the

target application and allows creating containers in a reproducible way. One of the

advantages of the Docker ecosystem is that it is not necessary to write an entirely new

Dockerfile to develop a new Docker image. Similar to inheritance in object-oriented

programming, a Docker image can inherit image definitions from another base image

by using the FROM command. In this case, all properties and files encapsulated in

the base image are inherited by the new image.

When building an image, Docker executes statements from the Dockerfile and

generates a layer for each instruction. Similar to git commits, each layer contains

only a collection of differences from the previous layer. The Docker image is built

from a massive pileup of layers. Each Docker image has a unique SHA-256 code as

its ID. For ease of versioned image development and management, Docker provides a

tagging mechanism where image developers can provide tag names for each version,
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which could also help versioning management in services based on containers.

Container orchestration is the automated process of provisioning, deploying, schedul-

ing, managing, networking, and scaling containers. Proper container orchestration is

crucial, especially in large-scale production environments, because of the increas-

ing proliferation of containers, large-scale distributed infrastructure, rapid iterations,

and DevOps pipelines. There are many container orchestration solutions for manag-

ing containers at scale, such as Kubernetes, Docker Swarm, and Red Hat OpenShift.

With these orchestration solutions, developers can easily develop, deploy, and manage

containerized applications and microservices with high availability and scalability.

1.4 Microservices

Microservices, or microservice architecture, have become tremendously popular over

the past decade. Microservices are a modern architectural pattern in which an appli-

cation is composed of many small distributed services that can be deployed and func-

tion independently, communicate through protocols and work together seamlessly.

Hence, microservices are a suitable approach to implement a distributed system, and

the application based on microservices is naturally a distributed system where each

service is a fundamental computing element.

While microservices can be deployed in a variety of ways, containers are an ideal

deployment unit. As discussed in Section 1.2 and Section 1.3, compared to IaaS,

containers can scale easily with considerably lower latency and footprint in terms of

hardware resources. In the microservice architecture, each service is usually encap-

sulated into and running in a container. There are also techniques offering isolated

runtime with even lower overhead by leveraging Unikernels [24] and processes [25].

The small footprint of containers makes them possible to run on hardware with limited

resources, such as IoT devices.

As a distributed system, the application based on microservices has inherited ad-

vantages in terms of scalability, performance, availability, and fault tolerance, com-
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pared with monolithic applications. Furthermore, the DevOps process benefits from

microservices. As the microservice architecture decouples the application and each

service is independently deployable and scalable, developers can develop, refactor,

monitor, and maintain a single part of the application without worrying about the

rest part.

Microservices have become the core of developing cloud-native applications, allow-

ing developers to build applications that are scalable and resilient, have a large scale,

and meet the needs of rapid iterative development. Besides web-based systems and

cloud applications, other distributed systems could also benefit from the microser-

vice architecture, including IoT systems [26, 27]. Microservices and IoT systems

already share some ties, such as heterogeneous and distributed hardware, embedded,

self-contained and granular services, and technology stacks related to cloud comput-

ing. There is a fast growing trend of containers with non-AMD64 architectures (e.g.,

ARM) that are frequently used by IoT devices, which may suggest microservice-based

IoT systems have been gaining popularity [28].

With the advent of serverless computing, serverless functions fully managed by

FaaS platforms have become a popular way to host microservices in recent years. We

refer to microservices hosted by serverless functions as serverless microservices. A

serverless function is a relatively small bit of code that abstracts a small part of an

application and performs one event-driven action. Therefore, the serverless paradigm

generally enables a more granular level for microservices. An application can be re-

ferred to as serverless if it is built with serverless microservices. In this thesis, we

use serverless functions and serverless microservices, and serverless applications and

applications based on serverless microservices interchangeably. Serverless comput-

ing, FaaS, serverless functions, and serverless applications are further discussed in

Section 1.5.
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1.5 Serverless Computing

1.5.1 FaaS and Serverless Paradigm

As an emerging cloud computing paradigm, serverless computing is yet another ap-

proach to build distributed systems and has transformed the way how developers

build and manage cloud-native applications. Under FaaS, developers mainly focus

on writing source code for each function that abstracts a part of an application im-

plementing business logic. The notion of function in FaaS is similar to a function

in functional programming or a method in object-oriented programming, responsible

for handling one task required by the application statelessly. The source code of the

function and its dependencies are packaged together, and the function is running in

an ephemeral isolated environment (e.g., Docker container).

AWS launched a computing service called Lambda in 2014 [29], which could store,

package, and deploy functions uploaded by users, handle events and requests (trig-

gers) of functions, monitor the resource usage, and autoscale function containers

correspondingly. This was the first time that the function execution was offered as

a cloud service. Today, besides AWS Lambda, many FaaS platforms with similar

functionalities are provided by public cloud service providers and open-source com-

munities such as Google Cloud Functions, Azure Functions, Apache OpenWhisk, and

OpenFaaS.

Figure 1.2 depicts the high-level overview of FaaS platforms. Functions hosted on

FaaS platforms can be triggered by various event sources, such as HTTP requests,

messages queues, and cron jobs. The API gateway (or any other type of gateway)

processes the event, finds the requested function from the function store, and sends it

to the container management platform together with its payload. If there is already

a container comprising the requested function, the function call will happen in the

existent container. If there is not, the platform will first create a new container,

inject the function, configure the environment, and then execute the function. Such
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Figure 1.2: The high-level overview of FaaS platforms.

processes are known as warm start and cold start, respectively. The results will be

returned through the API gateway after the function execution is completed.

As FaaS platforms take over operational responsibilities, such as function deploy-

ment, container orchestration, resource management, and monitoring, besides upload-

ing the source code of functions, users have limited control over resources on FaaS

platforms. Taking AWS Lambda as an example, the amount of allocated memory dur-

ing execution and the concurrency level are only options for tuning the performance

of functions. The amount of allocated memory is between 128 MB and 3,008 MB in

64MB increments [30]. Previous researches have proven that computational power

and network throughput are in proportion to the amount of allocated memory, and

disk performance also increases with larger memory size due to less contention [31,

32]. By reserving and provisioning more instances to host functions, a high concur-

rency level can decrease fluctuations in the function performance incurred by cold

starts (container initialization provisioning delay if no warm instance is available)

and reduce the number of throttles under very heavy request loads [33].

FaaS platforms also introduce a new GB-second billing model depending on the

allocated memory size, function duration, and the number of invocations. For ex-

ample, AWS Lambda charges $0.000016667 for every GB-second and $0.20 per 1M
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Figure 1.3: The cost and performance with regard to the amount of allocated memory
of a CPU-intensive function (hashing) deployed on AWS Lambda.

function invocations. The billed duration is the function duration rounded up to the

nearest 100ms and metered at a granularity of 100ms [34]. Due to the rounding and

billing granularity, the cost fluctuates erratically as the memory size changes, as our

experiment results shown in Figure 1.3, in which the blue line is the performance-

memory curve of the function. In other words, the allocated memory size acts like

a tuner tuning the performance (function execution duration or function response

time) and cost of functions hosted on FaaS platforms. The figure is further discussed

in Section 5.1. The new billing model and such irregularities make the modeling and

optimization problems non-trivial.

By leveraging FaaS, application developers can decouple the business logic into a

group of functions hosted on FaaS platforms without having to manage the underly-

ing infrastructure. Such a way to develop cloud-native applications is the serverless

paradigm. As FaaS platforms shift most operational responsibilities to cloud service

providers, the overhead of server provisioning, management, monitoring, failover, and
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scaling is eliminated, like there are no servers to manage at all, namely serverless.

While serverless is a superset containing a series of fully-managed cloud services, FaaS

and serverless are often conflated. We use them interchangeably in this thesis.

1.5.2 Serverless Application and Workflow

Similar to microservices, serverless applications are inherently distributed. The server-

less application decouples its business logic into a group of serverless functions hosted

on FaaS platforms and leverages necessary cloud services such as bucket storage,

message queue, and pub/sub messaging service to build a stateless and event-driven

software system [17, 35]. In general, the serverless workflow is the orchestration of

functions in the serverless application to implement the entire business logic. AWS

defines that the serverless workflow describes a process as a series of individual func-

tions and coordinates them [36]. To complete the business logic of the application,

interactions among decoupled functions are indispensable, leading to different struc-

tures in the workflow graph. As shown in many examples of serverless applications

deployed in the production environment, there can be four types of structures in the

serverless workflow, including parallel, branch, cycle, and self-loop [37–39].

In most cases, a coordinator is required to chain together components of the ap-

plication, handle events among functions, and trigger functions in the correct order

defined by the business logic. Typically, a message queue, a pub/sub messaging

service, an event bus, or a workflow coordinator like AWS Step Functions Express

Workflows works as such a coordinator [11, 35, 40]. While serverless functions are

stateless by the very design, many serverless function orchestration services can coor-

dinate serverless functions and integrate them into a serverless workflow abstracted as

a state machine, making it possible to handle complex tasks. Figure 1.4 illustrates an

example of a serverless application composed of seven functions. The two numbers on

each function represent the response time and allocated memory, respectively. P and

D are the transition probability function and the delay function, which are detailed
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Figure 1.4: Workflow of a serverless image classification application composed of seven
FaaS functions.

in Chapter 4.

1.6 Motivation

Performance, cost, and security are key concerns inherent in any type of distributed

system, hindering its wide adoption by potential users. Cloud computing, including

serverless computing, is one of the most popular use cases of distributed systems.

Also, microservice architecture is a widely used approach to build distributed sys-

tems. Furthermore, the Internet of Things (IoT) is a cyber-physical ecosystem with

distributed interconnected devices and has become an indispensable factor in many

areas of daily life. Therefore, in this thesis, our focus is on addressing such key chal-

lenges in distributed systems in the form of serverless microservices and IoT systems

with microservices.

Specifically, the motivation of this thesis is fourfold.

1. The performance of a single computing node is one of the most crucial fac-

tors influencing the performance of distributed systems. This is true especially

for multi-tenant distributed systems, including cloud computing and serverless
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computing platforms, where the system size is somehow limited or even fixed

for customers due to cost considerations. For distributed computing service

providers, SLA adherence in terms of performance is one of the critical com-

petitive advantages. For example, the throughput and response time of func-

tions are important aspects of serverless computing, which largely determine the

performance of applications based on serverless microservices. However, when

it comes to the placement of function containers (or any other type of sand-

box), many FaaS providers leverage simple spread and bin packing algorithms

to place containers on VMs without considering the type of the workload and

their performance implications when placed on the same infrastructure [31]. For

instance, deploying too many function containers with CPU-intensive workloads

on the same node could degrade the throughput of serverless functions. The

existing function placement algorithms could result in insufficient performance

isolation and compromise the ability of FaaS platforms to deliver on their per-

formance commitments. Therefore, an adaptive serverless function placement

algorithm is required to improve SLA adherence.

2. Performance modeling is essential when designing and implementing distributed

systems. Also, for multi-tenant distributed systems, including FaaS platforms,

the infrastructure where serverless microservices are usually deployed, the cost is

one of the key concerns for their users. As the serverless application is emerging

as a new type of distributed system, performance and cost modeling is crucial

for developers to design, configure, and test serverless applications properly.

However, the high complexity and the opacity of the underlying infrastructure

make performance modeling of serverless applications a challenging task. FaaS

platforms also introduce new billing models. Many studies have mentioned

the lack of performance and cost models for serverless applications as one of

the challenges in serverless computing [11, 41, 42]. New performance and cost
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models designed for serverless applications are highly demanded.

3. Besides modeling performance and cost of serverless applications, the trade-

off analysis between the performance and cost of serverless applications is also

essential [42, 43]. Currently, developers have to test the serverless applica-

tion under numerous configurations and cope with the performance and budget

constraints. Such a testing process is usually extremely time-consuming and fi-

nancially unacceptable. Performance and cost optimization is a non-trivial and

necessary step towards guaranteeing the SLA of serverless applications in an

economical manner, which is basically finding an acceptable trade-off between

performance and cost.

4. Security is one of the major challenges in distributed systems [4–6, 10]. Simi-

larly, while IoT devices can enable intelligent processes, the security of the IoT

system has always been an issue hindering its widespread application in critical

businesses [44]. Distributed systems built on IoT devices are vulnerable to dif-

ferent types of attack due to high exposure, numerous attack surfaces, limited

computational resources, and low reliability. As a distributed system deployed

in a real-world environment, security breaches in IoT systems can lead to severe

consequences [45]. Therefore, distributed systems built on IoT devices should

have fine-grained security management components. Also, security management

of IoT systems should require minimum human intervention since IoT systems

are usually deployed at a large scale and manually handling numerous possible

risks in the environment is practically impossible. Hence, autonomic security

management is indispensable for IoT-based distributed systems.

1.7 Objectives

Given the aforementioned motivations, there is a clear gap in research regarding SLA

adherence, performance and cost modeling and optimization, and autonomic security
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management, which leads us to four research objectives. Specifically, in this thesis,

we aim to:

• Objective 1: Optimize the placement process of serverless functions to miti-

gate resource contention and improve throughput without incurring significant

overhead for better SLA adherence.

• Objective 2: Build performance and cost models that can obtain the end-to-

end response time and cost of a serverless application when orchestration and

configuration of the application are given.

• Objective 3: Design an optimization algorithm for calculating the best perfor-

mance under a given budget and the minimum cost for a desired performance

for a serverless application.

• Objective 4: Develop a security management solution that can mitigate threats

and enhance security for distributed IoT systems in an autonomic manner.

1.8 Contributions

The main contributions of this work are four-fold, benefiting both microservice-based

distributed system users and distributed computing service providers.

1. To tackle the unoptimized function placement problem, we design and evalu-

ate a machine learning-based algorithm to optimize the placement of function

containers of serverless applications without incurring significant performance

implications for hosted applications and delay for the container orchestration

process. With practically negligible additional overhead, the proposed function

container placement algorithm improves the throughput by 10% to 36% and

reduces the response time by 9% to 32%.

2. To resolve the performance and cost unpredictability of serverless applications,

we propose performance and cost models to accurately get the average end-to-
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end response time and cost of serverless applications with parallels, branches,

cycles, and self-loops in their workflows. The proposed models can precisely give

the end-to-end response time of serverless applications with over 98% accuracy

and estimate the average cost with an accuracy of over 99%, independent of the

complexity of their workflows.

3. To address the trade-off between the performance and cost of serverless appli-

cations, we present a heuristic algorithm for optimizing the performance and

cost of serverless applications, which can yield the optimal configurations of

functions achieving the best performance for a given budget and the minimum

cost satisfying a given performance. The proposed optimization algorithm can

effectively and efficiently resolve two types of optimization problems with over

97% accuracy.

4. To achieve autonomic security management, we first propose an ontology with

four features for describing environments with distributed IoT systems, which

can facilitate analysis and reasoning about the current state of the space in a

machine-understandable fashion. Then, we implement an autonomic security

manager with four layers that can monitor and analyze events and context, and

plan and execute adaptive countermeasures with minimum human intervention

at a large scale.

All scripts, algorithms, and experimental results proposed and discussed in this thesis

are available in the artifact repositories [46–48].

1.9 Thesis Outline

The rest of the thesis is organized as follows: In Chapter 2, we survey and discuss the

latest literature related to research objectives. In Chapter 3, we optimize the process

of serverless function placement and achieve Objective 1 by proposing and evaluating
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an adaptive serverless function placement algorithm. Chapter 4 presents the defini-

tion of the serverless workflow and performance and cost models to accurately predict

the end-to-end response time and cost of serverless applications, solving Objective 2.

In Chapter 5, we address Objective 3 by proposing a heuristic-based performance and

cost optimization algorithm for serverless applications, which can solve two optimiza-

tion problems. In Chapter 6, we accomplish Objective 4 by designing an ontology

for formal description of the IoT environments and developing an autonomic security

manager with the MAPE-k method. Chapter 7 discusses and concludes the thesis

and presents some potential future directions toward optimizing microservice-based

distributed systems.
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Chapter 2

Literature Review

In this chapter, we review the literature related to four research objectives. Specif-

ically, we survey and discuss the research work in the areas of FaaS and serverless

computing (related to Objective 1, 2, and 3), performance modeling for cloud com-

puting (related to Objective 2), workflow scheduling and optimization of distributed

applications in the cloud environment (related to Objective 3), and microservice-

based IoT systems and ontology-based security management (related to Objective 4).

2.1 Serverless Computing and FaaS platforms

Cloud computing, including serverless computing, has become one of the most pop-

ular use cases for distributed systems. Many cloud service providers have launched

their FaaS platform, including AWS Lambda, Google Cloud Functions, and Microsoft

Azure Functions in recent years. Since then, serverless computing has become an

emerging technique and research topic in both industry and academia. There have

been efforts made to topics including profiling FaaS platforms [19, 31, 49], developing

new serverless applications and platforms [50–52], migrating to serverless [53, 54],

and designing new software engineering methodology [55, 56].

Wang et al. [31] evaluated three FaaS platforms, namely AWS Lambda, Azure

Functions, and Google Cloud Functions, from various aspects, including underly-
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ing architectures, performance isolation, scalability, cold start latency, and resource

management. They confirmed the CPU power is in proportion to the amount of al-

located memory, and disk performance and network throughput also increase with

larger memory size due to less contention. They also observed that the underlying

infrastructure of FaaS platforms is heterogeneous and cold starts could incur signifi-

cant overhead. Besides, this work revealed the lack of performance isolation between

function containers and the co-residency of functions, causing high variance (14.1% -

90%) in the CPU utilization rates of functions.

Lee et al. [19] studied the performance and overhead of running concurrent server-

less functions, and cold start behaviors on four FaaS platforms, and compared the

serverless paradigm with VM-based IaaS solutions. They found that AWS Lambda

outperforms other FaaS platforms in terms of CPU power, and network and disk

throughput when processing dynamic concurrent invocations. Compared to VMs,

serverless computing could save cost for processing short-lived tasks.

Figiela et al. [32] conducted performance tests by deploying a serverless workflow

on four FaaS platforms and measured the data transfer delay between components

and the container lifespan. Their results again confirmed the CPU performance and

network throughput of serverless functions is proportional to the allocated memory

size on FaaS platforms, including AWS Lambda and Google Cloud Functions. But

overheads, such as network latency, routing, and scheduling, are independent of the

memory size. They also again observed that serverless functions are deployed on

heterogeneous hardware.

There have been some works on the evaluation and performance profiling of open-

source FaaS platforms, including Apache OpenWhisk [57], OpenFaaS [58, 59], and

Kubeless [58, 59]. Djemame et al. [57] extensively evaluated the performance of

Apache OpenWhisk in terms of effectiveness and efficiency and answered three re-

search questions. Their results demonstrated OpenWhisk performs better than the

Docker solution that is mimicking the underlying operation of OpenWhisk in terms
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of CPU, memory, and network, suggesting OpenWhisk may orchestrate containers

optimally. Mohanty et al. [58] observed that OpenFaaS is the most flexible and ex-

tendable FaaS platform, and Kubeless has the most consistent performance because

of its simple architecture. Balla et al. [59] compared the performance of functions

written in three programming languages on four open-source FaaS platforms. They

found that the optimum platform is varying under different workloads.

Jackson et al. [60] investigated the impact of programming languages on the dura-

tion and cost of FaaS functions. Jonas et al. [17] discussed inadequate storage, high

communication overhead, high cold start latency, and lack of predictable performance

and cost of applications. Shahrad et al. [61] found the containerization incurs huge

overhead and cold start brings the latency as high as ten times of a small function’s

execution time. Hellerstein et al. [62] investigated cold start, limited storage, and

communication overhead by case studies in distributed serverless computing. Daw

et al. [63] made efforts to solve the cascading cold start problem for serverless appli-

cations by inferring the most likely execution path in the workflow and provisioning

relevant resources in advance.

Several works presented a set of key challenges for serverless architecture. The

challenge that many studies have mentioned is the unpredictable performance and

cost due to the lack of performance and cost models [11, 17, 41, 42].

Eivy et al. [41] found that the serverless paradigm could cost up to three times as

much as conventional VM-based solutions under certain scenarios. The cost modeling

of serverless applications can be a very complex and difficult task because of the

new billing model with small granularity and multiple variables. They still highly

recommended that developers should model the cost of their applications hosted on

FaaS platforms to avoid surprise bills before migrating to serverless.

Baldini et al. [11] claimed that the serverless function is potentially suitable to

handle bursty, unpredictable, short-lived, and CPU-intensive workloads because it is

easy to scale and does not require paying for idle instances. While FaaS platforms
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take on more operational responsibilities compared to IaaS, developers have to spend

more effort on modularizing applications and designing event-driven patterns. They

also stated cost modeling of serverless applications as one of the key challenges that

need to be investigated.

Eyk et al. [42] identified several challenges and opportunities for serverless com-

puting, including resource management, performance and cost, data privacy, and

compatible APIs. Because of the fine-grained billing model, for serverless users, there

is an urgent need for new models and tools to solve the predictability problem of

performance and cost and the trade-off between them. They stated that new perfor-

mance and cost models and analysis on optimizing trade-offs between performance

and cost are among the top five obstacles for serverless computing.

In this thesis, we aim to mitigate resource contention and improve performance for

better SLA adherence by designing a machine learning-based algorithm to optimally

place function containers (Chapter 3). To solve the unpredictable performance and

cost issues, we propose performance and cost models to accurately get the end-to-end

response time and average cost of serverless applications (Chapter 4). We also present

a heuristic algorithm to help developers navigate the trade-off between performance

and cost (Chapter 5).

2.2 Performance Modeling for Cloud Computing

While performance modeling is one of the challenging issues for distributed systems

due to their high complexity, the problem of modeling the performance of cloud

architectures and applications has been extensively investigated over the past decade.

Quality of service (QoS) requirements, including response time, availability, reliability,

and monetary cost, are the main focus of such models.

The queuing theory has been used to predict such QoS metrics for cloud systems.

Yang et al. [64] modeled the cloud center as an M/M/m/m + r queuing system

and obtained the probability density function of response time and the average value.
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Khazaei et al. [65] obtained the distribution of response time and blocking probability

with regards to the number of servers and buffer size for a cloud center using a semi-

Markov M/G/m/m+ r queue, where r is the buffer size for the incoming job. Using

the task blocking probability and mean response delay as indicators, this work has

been extended to predict the availability of cloud systems later [66]. Li et al. [67]

leveraged analytical models based on M/M/c queues to optimize performance levels

of composite service application jobs by tuning configurations and resource allocation

decisions. Vilaplana et al. [68] utilized M/M/1 and M/M/m queues to model a single

entry server and processing nodes on the cloud to get the total response time with

regards to the service rate of processing nodes.

Petri net has been proven to be an effective formalism for modeling distributed sys-

tems with concurrency and synchronization in the cloud. Chen et al. [69] leveraged a

deterministic and stochastic Petri net to illustrate the performance of producer/consumer-

based application models in the cloud environment. Alansari et al. [70] leveraged a

colored Petri net to model the energy and transmission costs along an execution path

and find a suitable migration policy. Rygielski et al. [71] used queuing Petri nets to

predict throughput between network nodes with an accuracy of 95% for underutilized

links and 74% for heavily utilized links. Cao et al. [72] developed an evaluation model

based on Queuing Petri Net to model the throughput of cloud systems with three dif-

ferent architectures. Rista et al. [73] introduced a generalized stochastic Petri net

model, composed of the combination of timed and non-timed Petri nets, to predict

the throughput and latency of the network in container-based cloud environments.

Machine learning has also been applied to performance modeling for cloud comput-

ing. Xu et al. [74] leveraged unified reinforcement learning to enable auto-configuration

of VMs to provide service quality assurance with adaptive budget and configura-

tions under varying workload. Their approach could also solve the trade-off between

utilization objectives and performance guarantees. Kundu et al. [75] proposed the

methodology to predict the performance of the application hosted on VMs based
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on the allocated resources and resource contention by using artificial neural network

(ANN) and support vector machine (SVM), with the median of the prediction error

of 4.36%. Didona et al. [76] studied several hybrid box techniques that leverage ana-

lytical modeling and machine learning in synergy to predict the performance of Total

Order Broadcast service and NoSQL database service. Witt et al. [77] studied the

features that are required to build performance models, such as execution duration,

memory usage, and wait times. They extensively surveyed numerous approaches for

predictive performance modeling, including statistical analysis and neural networks.

Eismann et al. [78] applied machine learning techniques to predict the response time

of serverless functions that are input-parameter sensitive and the total cost of the

serverless workflow based on input parameters.

These works on performance modeling either assumed the cloud system is de-

signed homogeneously or required the parameters relevant to the underlying resources

and incoming requests, which are not reasonable enough for the serverless paradigm

because of the infrastructure-agnostic and closed-source platform, event-driven and

highly decoupled software architecture, auto-scaling resources, and elimination of re-

source management. While many research works have proven that workflows based

on the directed acyclic graphs (DAG) and Petri net are effective for performance and

cost modeling of systems in parallel, distributed, and scientific computing. However,

they are not favorable for modeling serverless applications, as cycles and loops are

not allowed, and cause the state explosion problem without efficient solutions in Petri

nets. The disadvantages of Petri nets also lie in their high complexity and limited

support of non-functional requirements in cloud computing [79]. Besides, these ap-

proaches also focused more on the performance analysis, and most of them did not

model the cost. In this thesis, we fill these gaps by proposing a definition of the

serverless workflow and performance and cost models that are compatible with the

current serverless paradigm (Chapter 4).
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2.3 VM Placement and Workflow Scheduling

The function placement issue (Objective 1) resembles the virtual machine placement

(on physical machines) and workflow scheduling problems in nature. Also, cloud-

based workflow scheduling solutions can shed some light on performance and cost

modeling and optimization of serverless applications (Objective 2 and Objective 3).

Over the past decade, both topics have been extensively studied.

Calcavecchia et al. [80] proposed a technique named Backward Speculative Place-

ment that optimizes VM placement under a continuous stream of deployment requests

by migrating VMs on the most loaded physical machine (PM) to all other PMs. They

designed a demand risk measuring the risk of demand, and the proposed algorithm

could select an optimum migration achieving the least dissatisfaction risk based on

historical workload data. Chowdhury et al. [81] studied and evaluated five different

bin packing solutions using real-world workload traces, considering power consump-

tion, SLA violation, performance degradation incurred by migrations, and the number

of migrations. Alam et al. [82] presented a multi-objective VM placement algorithm

that maximizes the reliability of VM placement, minimizes communication delay, and

solves the trade-off between reliability and delay. The proposed model could achieve

up to about 90% of the optimal solution and improve the reliability by up to 15%.

Ghobaei-Arani et al. [83] proposed a VM placement algorithm based on the best

fit decreasing algorithm to reduce energy consumption and SLA violations. Qin et

al. [84] leveraged multi-objective reinforcement learning to design a VM placement

algorithm that minimizes energy consumption and resource wastage simultaneously.

Besides performance, power consumption is also a key focus while designing VM

placement algorithms. Energy consumption is one of the optimization goals in works

presented by Chowdhury et al. [81], Ghobaei-Arani et al. [83], and Qin et al. [84].

Khosravi et al. [85] identified the most important factors affecting energy consumption

and carbon footprint. Then, they designed a dynamic VM placement algorithm that
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could measure the power usage effectiveness and reduce operational costs of data

centers while meeting performance guarantees. Ismail et al. [86] focused on VM

placement in cloud-IoT computing systems and extensively classified and compared

13 different algorithms in a unified setting. Ibrahim [87] presented PAPSO, a power-

aware technique based on particle swarm optimization. PAPSO could minimize the

number of active PMs with the major constraint to decrease the number of overloaded

servers while satisfying SLAs.

Workflow scheduling is an extensively studied topic in cloud computing, which aims

to optimally allocate computing resources to inter-dependent tasks in the workflow

with the consideration of constraints, such as SLA and cost. Abrishami et al. [88]

presented a Partial Critical Paths algorithm to solve the best cost under the perfor-

mance constraint problem for QoS-based workflows on the utility grid. Later, they

extended the work by considering several cloud features such as the pay-as-you-go

and duration-based billing model and applied the algorithm to a workflow instance

on IaaS clouds to solve the same problem [89]. Lin et al. [90] proposed a Critical-

Greedy algorithm to solve the best performance under the budget constraint problem

for scientific applications. Faragardi et al. [91] proposed a Greedy Resource Provi-

sioning with the consideration of heterogeneous cloud resources and the efficiency rate

of instances to solve the best performance under the budget constraint problem for

workflow applications on IaaS Clouds. Bao et al. [92] designed a Greedy Recursive

Critical Path algorithm to find the configuration that achieves the best performance

under the budget constraint for microservice-based applications on the cloud.

The research work presented in this thesis (Chapter 4 and Chapter 5) differs from

the previous work on workflow scheduling at least in the following aspects: 1) We

consider the new features in the serverless computing paradigm such as the memory-

dependent performance rules, GB-second billing model, independently operated com-

ponents, and event-driven architecture when modeling applications based on server-

less microservices. 2) The serverless workflow is not confined to DAGs, and cycles
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and self-loops are allowed to appear in the workflow. 3) We propose a Probability

Refined Critical Path Algorithm to solve the trade-off between performance and cost

for serverless workflow-based applications.

2.4 Microservice-based IoT and Ontology-based Se-

curity Management

Security and heterogeneity are some of the major challenges in distributed systems

like IoT. Proper security management should be a key element when deploying IoT

systems in critical businesses. Making improvements in IoT architecture is one of the

essential ideas for tackling heterogeneity, improving security, and easing management.

Recently, several works focusing on microservice-based IoT architecture have emerged.

Following the view of microservice-based IoT systems, different IoT devices can be

viewed as independent microservice providers, and we can leverage some microservice

patterns to manage the IoT system.

Butzin et al. [26] proposed a microservices approach for the IoT to demonstrate

how operating-system-level virtualization and open service gateway could ease ser-

vice deployment and improve scalability and testability. Lu et al. [27] proposed a

secure microservice framework for IoT. They considered the IoT system as a service-

oriented system of many microservices and adapted some technical patterns widely

used in web-centric systems for IoT systems, such as API, SDN, containers, and ac-

cess control, to enable high-level development and integrated security policies. Based

on such an architecture, Lu et al. [93] extended their work and developed a prototype

of autonomous vehicles management system, which could help several vehicles form

a physically-local chain, and maintain close proximity while traveling down a road.

While most of the papers in this area just covered some basic designs and ideas of

an IoT system with microservice architecture, such an implementation illustrated the

feasibility of implementing microservice-based IoT systems in the production envi-

ronment. Sun et al. [94] proposed an open IoT framework based on the microservice
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architecture, which has nine components responsible for different functions. Different

from directly leveraging microservice patterns, they first analyzed the possible func-

tions required and provided by IoT devices and extracted nine general components.

Additionally, they also considered artificial intelligence, big data, and tenant services

of IoT systems in the framework design.

An ontology is defined as a collection of high-level primitives which capture and

model a knowledge domain [95]. The ontology usually adheres to the Resource De-

scription Framework (RDF) data model [96], which utilizes a human-and machine-

readable graph, expressed as a collection of triples, to represent the knowledge. Dur-

ing recent years, several works aiming at using ontology to ease the management

of smart spaces have been published. Ontology has been proven to be an effective

solution to tackle the heterogeneity and enable interoperability in IoT systems [97]

[98]. However, most of the ontologies proposed in this domain are focusing on ei-

ther the context of smart space or human actions in the smart space. Only a very

small proportion of work studies security management in smart spaces. These exist-

ing ontologies also fail to follow the changes in the IoT architecture, which is more

service-oriented nowadays.

Latfi et al. [99] proposed an ontology to describe the telehealth smart home. Chen

et al. [100] designed an ontology-based activity recognition technique in the context of

assisted living within smart home environments. Evesti et al. [101] proposed an infor-

mation security ontology and implemented it into security measures of the password.

It could be used for adaptive user authentication where the system is able to dynami-

cally modify user authentication depending on the monitoring authentication related

measures [102]. Borgo et al. [103] developed an ontology for collaborative robots

in the manufacturing domain, enabling the reconfigurable transportation system to

adapt control loops based on context knowledge. Seydoux et al. [104] proposed the

IoT-O ontology aiming at tackling interoperability issues in the smart home scenario.

Khan et al. [105] proposed a context-based security guideline ontology for describing
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vulnerabilities in smart homes. Since their proposed ontology could not describe ser-

vices and relevant context, it is not suitable for the resource description of systems

backed by the microservice architecture.

Korzun et al. [106] proposed the Smart-M3 platform with three key properties,

namely multi-device, multi-vendor, and multi-domain described by their previous

work [107]. The proposed platform has two types of components: the knowledge

processors (KPs) representing information producers and consumers such as devices

and users, and semantic information brokers (SIBs) to handle interactions among

knowledge processors. The Smart Space Access Protocol was implemented to handle

communications between SIB and KPs for interoperability. Based on the Smart-M3

platform, many use cases, including smart home, smart city, and healthcare systems,

were developed [108–110]. While we solve some similar problems in Chapter 6, in-

cluding security and ontology-based reasoning, the underlying nature and method

are different. We follow the notion of the microservice-based and event-driven ar-

chitecture where a central message broker is not required, and the interoperability

can be well maintained through the replaceable request model. Also, the existing

solutions did not give a solution to autonomic security management. While several

works focusing on IoT systems with the microservice architecture have emerged [97,

111, 112], they focused more on the resource description at a large granularity level,

such as smart city, and did not consider the security management either.

The existent ontologies fail to describe services, devices, policies, events, and con-

texts in a security-enhanced smart space backed by IoT systems with the microservice

architecture. Besides, an effective solution is required to integrate with the ontology

and manage the security of the smart space while minimizing manual work. We fill

both gaps by proposing and implementing the Secure Smart Space Ontology and an

autonomic security manager in this thesis (Chapter 6).
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Chapter 3

Improved SLA Adherence:
Adaptive Serverless Function
Placement

In this chapter, we formulate the serverless function placement problem and address

Objective 1 by proposing and evaluating a machine learning-based algorithm named

Smart Spread, which can adaptively select the location for function containers to

place, mitigate resource contention, improve the throughput of serverless functions,

and thus enhance SLA adherence without incurring significant operational overhead.

3.1 Function Placement Problem

As shown in Figure 1.2, when FaaS scheduling a new function container, the con-

tainer management platform has to select one VM to deploy the container. Function

containers have various types of workloads demanding different resources. Different

VMs also have a different level of resource utilization in terms of CPU, memory, net-

work, and disk, which is expected to have a different impact on the performance of

functions. If there are too many function containers with the same type of work-

load deployed on the same node, the performance in terms of response time and

throughput would inevitably decrease due to resource contention, compromising the

ability of FaaS platforms to deliver on their performance commitments. Therefore,

the function placement problem is to find an optimal function placement solution
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without incurring prohibitively high complexity and cost, which can place the new

function container optimally to try to avoid performance degradation due to resource

contention, improve throughput, and thus enhance performance SLA adherence.

While the function placement solution of most public FaaS platforms is usually

unknown to outsiders, there are works that examine function placement by conduct-

ing experiments. Wang et al. [31] examined how functions are scheduled on FaaS

platforms by periodically executing 40 measurement functions. Lloyd et al. [113]

studied container placement by performing scaling tests. AWS Lambda appears to

treat container placement as a bin packing problem and tries to place a new func-

tion container on an existing active VM to maximize memory utilization of VMs.

For Google Cloud Functions, the placement strategy is unknown. Azure Functions

seems to try to avoid co-locating containers of the same function on the same VM,

suggesting a spread algorithm may be adopted.

The Docker Swarm scheduler supports three basic scheduling strategies, namely

spread, binpack, and random. The default strategy is spread, in which the scheduler

assigns the container to the Docker Swarm node with the most available resources.

The binpack strategy minimizes the number of nodes in use and maximizes resource

utilization by placing containers on one node until its resources is depleted. As the

name suggests, the random strategy randomly selects an available node to place the

container. Besides the aforementioned built-in strategies, the Swarm manager also

supports filters to tell the scheduler how to further narrow down the list of poten-

tial nodes for creating and running a container. The constraints of the filter include

OS and health of the node, task slot, the number of running/stopped containers

on the node, affinity rules, dependencies, and port numbers. Most open-source and

Kubernetes-based FaaS platforms leverage the spread strategy for container place-

ment by default while providing advanced filters and constraint-based scheduling

strategies, which are more or less similar to strategies and filters in Docker Swarm.

In summary, all these major container orchestration solutions treat containers/-
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workloads in a black-box manner, and most of them leverage a rigid spread or binpack

strategy as their best effort to maintain the performance SLA. The insufficient per-

formance isolation stemmed from the black-box container scheduling technique can

severely degrade the performance of functions and serverless applications hosted on

FaaS platforms. In this work, we take the characteristics of function containers and

performance metrics of VMs into account and propose the Smart Spread algorithm

to mitigate resource contention and improve the throughput of serverless functions.

The proposed algorithm can optimally select the VM leading to the best predicted

performance to place the function, benefiting both FaaS users and service providers.

3.2 System Overview

The idea behind the Smart Spread algorithm is to leverage a predictive performance

model powered by ANN implemented on TensorFlow in order the select a VM to place

the function container leading to the best performance for FaaS users. Figure 3.1

illustrates the system overview of the proposed Smart Spread algorithm.

As shown in Figure 3.1, the system consists of three phases, namely a workload

profiling and data collection phase, an offline training phase, and a performance

prediction phase. In the workload profiling and data collection phase, the function

container is first deployed on a dedicated VM without any workloads in order to obtain

its baseline throughput and workload profile. Then, the function container is deployed

on a VM with random workloads running on it. The system continuously collects the

resource utilization metrics of the VM and throughput of the function and calculates

the normalized throughput of the function (illustrated by blue lines). The system will

later split the collected data sets into training and test sets and use them for training

the predictive performance model in the offline training phase (depicted by red lines).

In the performance prediction phase, the algorithm will take the workload profile of

the function to place and the VM resource utilization metrics of all available VMs

in the VM pool as inputs and then leverage the performance model to predict the
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Figure 3.1: System Overview of the proposed Smart Spread algorithm.

normalized throughput of the function on each VM (demonstrated by green lines).

The VM yielding the best predicted normalized throughput will be selected by the

algorithm to place the function container. Section 3.3, Section 3.4, and Section 3.5

describe three phases in detail.

As building and evaluating such a system require complete control over the FaaS

platform for container placement and performance measurement, we develop a server-

less computing platform from scratch for evaluating the proposed algorithm. The

platform is backed by an OpenStack-based IaaS platform with Docker and Metricbeat

preinstalled on each hosted VM. We develop a Flask-based RESTful API and deploy

it on every node in order to let the system interact with each node. Through the

API, the system can deploy a container with CPU and memory limits on a VM,

remove existing containers, and get statistics of containers. RabbitMQ is used as

the distributed task queue in the system. The system leverages Elasticsearch and
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Metricbeat to collect the performance metrics of VMs. The performance metrics

are retrieved through Elasticsearch API by the system. For evaluation and compar-

ison, three built-in placement strategies mentioned in Section 3.1 together with the

proposed adaptive function placement algorithm are implemented in the platform.

3.3 Workload Profiling and Data Collection

The workload profiling and data collection phase is responsible for capturing specific

characteristics of the workload in the function container and measuring the impacts of

random workloads on the performance of the function. When profiling the function,

the function container is deployed on a dedicated VM to eliminate the performance

degradation incurred by co-located containers. The profiler in the system sends con-

current requests to the function and measures its throughput in RPM (requests per

minute). The measured throughput will be used as the baseline throughput for cal-

culating the normalized throughput when collecting performance data under random

workloads. At the same time, based on Elasticsearch and Metricbeat, the system

monitors and collects the resource utilization metrics of the dedicated VM as the

workload profile of the function. We adopted the resource utilization metrics from

the previous work presented by Lloyd et al. [114], which studied performance predic-

tors for applications hosted on IaaS clouds. Table 3.1 lists the resource utilization

metrics collected by the system.

To study the effect of resource contention caused by other workloads on the per-

formance of functions, we need to collect performance data under random workloads

after profiling the workload. The system first deploys a random number of contain-

ers that each encapsulates a random workload on a VM and measures the resource

utilization metrics of the VM specified in Table 3.1 under such random workloads.

Then, the system deploys the function container, sends concurrent requests to the

function, and measures its throughput in RPM.

As serverless functions hosted on FaaS platforms have diverse workloads and us-
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Table 3.1: Resource utilization metrics.

Statistic Description Unit

CPU time CPU time ms

cpu usr CPU time in user mode ms

cpu krn CPU time in kernel mode ms

cpu idle CPU idle time ms

contextsw Number of context switches count

cpu io wait CPU time waiting for I/O completion ms

cpu sint time CPU time serving soft interrupts ms

dsr Disk sector reads count

dsreads Number of completed disk reads count

readtime Time spent reading from disk ms

dsw Disk sector writes count

dswrites Number of completed disk writes count

writetime Time spent writing to disk ms

nbs Network bytes sent count

nbr Network bytes received count

loadavg Avg # of processes in last min count

mem used pct The % of memory currently used %

ages, absolute throughput is not a reliable performance indicator. For cloud service

providers that handle various workloads, a good performance indicator should be able

to handle any type of workload regardless of its type and complexity. Therefore, we

need to normalize the throughput measured in this step to eliminate the influence

of different types and scales of the workload. Also, normalization can reduce the

complexity of data and the difficulty of the problem to be modeled. The normalized

throughput tpnorm is defined as Equation (3.1).

tpnorm =
tp

tp0
(3.1)
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where tp0 is the baseline throughput collected in the workload profiling phase and tp

is the throughput measured under random workloads.

Under random workloads, we collect a data set containing 183 data points. Each

data point consists of resource utilization metrics specified in Table 3.1 and normalized

throughput calculated by Equation (3.1).

3.4 Performance Model Training

With the workload profile and data set collected in the workload profiling and data

collection phase, we create a data set for training the predictive performance model,

which consists of 183 data points. The data set is divided into a training set with 128

data points and a test set with 55 data points. During the data preprocessing step, the

data points are standardized by removing the mean and scaling to unit variance. The

predictors of the machine learning-based performance model are resource utilization

metrics collected before deploying the new function container and the workload profile

of the function. The model predicts the normalized throughput of the function for

the given workload profile of a function and resource utilization metrics of a VM.

Due to varied characteristics of workloads, the performance (i.e., throughput and

response time) of the serverless function changes predominantly in a non-linear fash-

ion. We use ANN to train the performance model in the offline training phase because

of its high agility, fast prediction speed, generality, and flexibility, especially when fit-

ting non-linear functions.

The model is configured as a two-layer neural network. The first and the second

layers have ten neurons and five neurons, respectively, with the ReLU activation

function. The output layer uses the identity activation function. Mean square error

(MSE) is used as the loss function. The optimizer is based on stochastic gradient

descent (SGD) with a batch size of 10 and 1,000 epochs of training. Table 3.2 lists

the statistics of the trained model. Figure 3.2 demonstrates the performance of the

trained model on the test set.
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Table 3.2: Statistics of the trained model.

Statistic Value

R2 0.9309

RMSE 0.0584

Correlation 0.9705

Figure 3.2: The performance of the trained model for predicting the normalized
throughput validated by the test set.

3.5 Performance Prediction

The performance prediction phase is implemented by integrating the data collection

techniques in the workload profiling and data collection phase and the predictive

performance model obtained in the offline training phase. When the system receives

a request to trigger a function, the request enters the task queue as a message. When

processing the request, the system consumes the message in the task queue and

optimally places the new function container on a VM by leveraging the performance

model trained in the offline training phase.

When consuming the message, the system first calls the implemented API to re-
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Table 3.3: Configuration of the VMs used in the experimental evaluation.

Property Value

vCPU 2

RAM 4 GB

HDD 40 GB

Network 1 Gbps

OS Ubuntu 18.04 (Cloud Image)

trieve the performance metrics specified in Table 3.1, which are monitored and col-

lected by Metricbeat from all available VMs in the VM pool. Then, after preprocess-

ing the retrieved metrics, the system sends the metrics and the workload profile to

the predictive performance model. The model predicts the normalized throughput of

the function on each VM and returns predicted values to the system. The system

selects the VM with the greatest predicted normalized throughput to place the new

function container through the developed API and returns the result to the client. For

autoscaling, a threshold-based naive algorithm is leveraged. For each function, the

system measures the response time of the request and adds the number of containers

if the measured response time is beyond the predefined performance SLA.

3.6 Experimental Evaluation

3.6.1 Experimental Design

We deploy the proposed FaaS platform together with the Smart Spread algorithm

on a cluster with four VMs as worker nodes backed by Cybera [115], an OpenStack-

based IaaS platform. Table 3.3 summarizes the configuration of the VMs used in the

experimental evaluation.

For serverless functions for evaluation, we use three different types of workload,

namely CPU intensive, disk I/O intensive, and memory intensive, to simulate possible
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Table 3.4: Benchmark programs encapsulated in the container for evaluation.

Application Type Benchmark Configuration

CPU Intensive Sysbench CPU [117]
max-requests=2500
cpu-max-prime=1000

Disk I/O Intensive Fileio [117]
max-requests=200

file-test-mode=rndrw

Memory Intensive OLTP [117, 118]
table-size=10000
table-count=3

max-requests=10

workloads that a FaaS platform may process. Each type of workload is encapsulated

into a Docker container, in which a web server listens for incoming requests and exe-

cutes a benchmark program with a certain type of workload upon receiving a request.

Table 3.4 describes the benchmark programs and corresponding configurations used

in the evaluation process. For the CPU and disk I/O intensive workloads, we use

debian:latest as the base image. The base image of the memory intensive workload

is MySQL:5.7. All base images are obtained from the official repository on Docker

Hub [116].

When deploying the container, each container is configured with a memory limit of

512 MB, a CPU limit that is 50% of a CPU core, and a disk I/O limit of 7.15 MB/s,

which is about half of the maximum throughput of the hard disk drive attached

to the VM. Therefore, a simple calculation shows that at most 7 containers can be

deployed on a VM simultaneously. In order to avoid any potential crash due to limited

computing resources, we limit the number of co-located containers on a VM to 6, thus

limiting the total number of containers deployable in the proposed system to 24.

We test the performance of the hosted function by sending requests to trigger a

function with concurrency levels changing with respect to time. A script is developed

to simulate that each user in a group makes a request, waits for the response, and

makes another request as soon as the response is received for the previous request.

Figure 3.3 illustrates the concurrency level of test requests sending to the platform
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Figure 3.3: Concurrency levels when sending the test requests.

with respect to time. For example, the concurrency level is 1 at time 0, indicating

only one client sends requests to the platform. At time 10, the concurrency level is 17,

which means there are 17 concurrent clients making requests. Besides, to eliminate

the effect of network latency, all requests are made from a VM inside the internal

network with negligible latency to the platform. To get the steady-state throughput

and response time, we assume a warmup period of 30 seconds during which the

results are not recorded and used for evaluation. We perform tests using four function

placement algorithms, namely spread, binpack, random, and Smart Spread, and obtain

and compare the performance of functions in terms of their throughput and response

time to evaluate the proposed Smart Spread algorithm.

3.6.2 Experimental Result

Figure 3.4, Figure 3.5, and Figure 3.6 illustrate the comparison of four function place-

ment algorithms in terms of throughput and response time of functions with CPU,

disk, and memory intensive workloads, respectively. To simulate the performance

of the proposed function placement algorithm when scheduling a serverless applica-

tion composed of multiple functions, we aggregate the results of three functions by
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summing up the throughput and response time of three functions presented in Fig-

ure 3.4, Figure 3.5, and Figure 3.6. Figure 3.7 shows the aggregated results in terms

of throughput, response time, and the number of containers. The shaded areas in

figures 3.4 to 3.7 represent the performance of functions under heavy load.

(a) Throughput (b) Response time

Figure 3.4: Comparison of four function placement algorithms in terms of throughput
and response time of the function with a CPU intensive workload.

(a) Throughput (b) Response time

Figure 3.5: Comparison of four function placement algorithms in terms of throughput
and response time of the function with a disk I/O intensive workload.

As shown in figures 3.4 to 3.7, the average aggregated throughput achieved by bin-

pack, random, spread, and smart spread under heavy load (shaded area) is 2996, 3523,

3934, and 4341, respectively. The proposed adaptive function placement algorithm

could improve the throughput by 10.35% - 44.89%. When functions are executed

with low concurrency levels, since there are sufficient resources, the throughput of

functions increases linearly without considerable differences, regardless of placement
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(a) Throughput (b) Response time

Figure 3.6: Comparison of four function placement algorithms in terms of throughput
and response time of the function with a memory intensive workload.

(a) Throughput (b) Response time

(c) Container Count

Figure 3.7: Comparison of four function placement algorithms in terms of aggregated
throughput, response time, and container count.

algorithms. When testing under heavy load (shaded areas), the proposed Smart

Spread algorithm generally produces the highest throughput while using the smallest

number of containers among four strategies, suggesting the proposed algorithm could

improve performance SLA adherence. As shown in Figure 3.7a, the binpack strategy
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achieves the worst throughput among three placement algorithms that treat the func-

tion in a black-box manner, as it sacrifices performance for lower costs. Conversely,

since the spread strategy sacrifices cost for better performance, it yields the highest

throughput among the three strategies. The performance of the random algorithm is

better than the binpack strategy but worse than the spread strategy.

We perform an analysis consisting of 100 iterations of optimal VM selection and

obtain the processing time of the system using the proposed algorithm to identify

the best VM candidate. Under the experiment configuration with four VMs, the

average processing time is 10.16 ms, which is negligible compared to the lifespan

of the function container and the billing granularity of FaaS platforms. The result

indicates that the proposed function placement algorithm does not incur significant

overhead.

3.7 Summary

In this chapter, we addressed Objective 1 by proposing and evaluating an adap-

tive serverless function placement algorithm named Smart Spread. We used ANN

to train the predictive performance model, which can accurately predict the nor-

malized throughput of a function based on the workload profile of the function and

performance metrics of VMs. To evaluate the algorithm, we developed a serverless

computing platform from scratch and conducted extensive experiments using vari-

ous workloads. Compared to placement strategies based on black-box techniques,

the proposed algorithm can mitigate resource contention, considerably increase the

throughput of the serverless function, and thus help FaaS providers improve SLA

adherence. The evaluation also validated the low overhead incurred by the proposed

algorithm.
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Chapter 4

Performance and Cost Modeling
for Serverless Applications

As discussed in Section 1.6, performance and cost modeling is essential when design-

ing and implementing distributed systems in order to set and manage performance

SLAs and control costs. Also, it is a best practice to test the performance and esti-

mate the cost of the serverless functions and applications before deploying them [41,

119]. However, there is a lack of performance and cost models for applications based

on serverless microservices, which has become one of the challenges in serverless com-

puting [11, 41, 42]. In this chapter, we solve this gap by building performance and

cost models that can obtain the end-to-end response time and cost of a serverless

application when orchestration and configuration of the application are given, i.e.,

addressing Objective 2. We first construct the serverless workflow of a serverless

application by giving the definition of the serverless workflow and four types of struc-

tures in the serverless workflow. Then, we propose two analytical models to predict

the performance and cost of the serverless application. By real experiments on AWS,

the accuracy of the two proposed models is evaluated.

4.1 Definition of the Serverless Workflow

The serverless workflow of a serverless application Gs is defined as a weighted directed

graph.
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Gs = (V,E, P,D,RT,RTTP,M,NI, C) (4.1)

where

– V is a finite set of |V | vertices {f1, f2, ..., fn}, such that n = |V |, representing

FaaS functions, integrated cloud services, or structural vertices;

– E ⊆ V × V is a finite set of directed edges. The directed edge from fu∈V to

fv ∈ V , denoted as ei = (fu, fv), represents the interaction between vertex fu

and fv defined by the business logic;

– P : V × V → [0, 1] is a transition probability function. P (fu, fv) identifies

the probability of invoking fv after finishing the execution of fu. A transition

probability of 0 represents the corresponding edge does not exist;

– D : V × V → [0,+∞) is a delay function. D (fu, fv) identifies the delay from

fu to fv incurred by the interaction/coordination method;

– RT : V → [0,+∞) is the response time of a function. RT (fu) is the response

time of function fu;

– RTTP : V → ℘ ([0,+∞)× [0, 1]) is a function representing all possible values of

the response time and corresponding probability of interim B-nodes, which are

defined in Section 4.3.1 to process branches. RTTP (f) ≜ ∅ for any f which is

not a B-node;

– M : V → N is a memory function. M (fu) is the size of the allocated memory

of function fu;

– NI : V → [0,+∞) is a function representing the average number of invocations

of each function in V , per execution of the serverless workflow Gs;
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– C : V → [0,+∞) is a cost function. C (fu) is the cost per invocation of function

fu;

Besides FaaS functions, vertices can also represent other cloud services, such as

a MapReduce service or a database operation service. As those services are similar

to functions in terms of execution, we collectively call them functions for brevity. V

can also contain several non-functional structural vertices that facilitate developing

the workflow and do not incur any delay and cost, such as start node and end node.

Typically, the execution of the serverless workflow starts with a particular function

as a trigger, and then the following functions will be invoked to complete the business

logic [120]. Therefore, we include a start node fstr and an end node fend in V, defining

the entry point and the endpoint of the workflow, respectively. Figure 1.4 shows an

example of a serverless workflow for image classification. Based on the definition of

the serverless workflow, we define the following notations:

1. A simple path in the serverless workflow is a finite sequence of distinct vertices

and edges s = f1e1f2e2...en−1fn such that (i) fi ∈ V for all integers 1 ≤ i ≤ n,

(ii) ei ∈ E for all integers 1 ≤ i ≤ n− 1, and (iii) ei = (fi, fi+1) for all integers

1 ≤ i ≤ n− 1.

2. The transition probability of the simple path s = f1e1f2e2...en−1fn is defined as

Equation (4.2).

TPP (s) =
n−1∏︂
i=1

P (fi, fi+1) (4.2)

3. The delay (response time) of a simple path s = f1e1f2e2...en−1fn, denoted as

DLY (s), is defined as Equation (4.3), namely the sum of the response time of

functions and the delay incurred by edges in this path. In particular, we use

DLY −(s) to denote the delay of a simple path without considering the response

time of the first and last vertices in the simple path, defined as Equation (4.4).

DLY (s) =
n∑︂

i=1

RT (fi) +
n−1∑︂
i=1

D (fi, fi+1) (4.3)
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DLY − (s) =
n−1∑︂
i=2

RT (fi) +
n−1∑︂
i=1

D (fi, fi+1) (4.4)

4. ASP (fu, fv) denotes all simple paths between vertex fu and fv, which is the set

of all possible simple paths in the workflow graph, starting from fu and ending

at fv, with fu and fv included.

5. The shortest path length between two vertices fu and fv, denoted as SPL(fu, fv),

is specified as the length of the shortest simple path from fu to fv. The length

of a simple path is the number of edges in it.

6. SUB(fu, fv) denotes the subgraph between fu ∈ V and fv ∈ V , which is derived

from Gs by removing all vertices and edges not in any paths in ASP (fu, fv).

7. out (fu) denotes the set of all edges starting from vertex fu, defined as the

following.

out (fu) = {e ∈ E : e = (fu, f) for some f ∈ V }

For convenience, Table 4.1 includes the definitions of notations and parameters

used in the performance and cost models.

4.2 Structures in the Serverless Workflow

In this section, we define four types of structures in the serverless workflow, namely

parallel, branch, cycle, and self-loop, as shown in Figure 4.1.

4.2.1 Parallel

Let us consider all simple paths between vertices fu ∈ V and fv ∈ V . If there

is more than one simple path whose transition probability is 1, we define the sub-

graph composed of all simple paths with the transition probability of 1 as a parallel

structure .
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Table 4.1: Definition of notations used in the performance and cost models.

Notation Definition

Gs

the serverless workflow (eq. (4.1))

Gs = (V,E, P,D,RT,RTTP,M,NI, C)

f a FaaS function, cloud service, or structural vertex

e = (fu, fv) a directed edge from fu to fv

s a simple path

TPP (s) transition probability of a simple path s

DLY (s) delay of a simple path s

DLY − (s)
delay of a simple path s without considering

the response time of first and last vertices in it

ASP (fu, fv) the set of all simple paths between fu and fv

SPL(fu, fv) the shortest length of simple paths between fu and fv

SUB(fu, fv) the subgraph between fu and fv

out(fu) the set of all edges starting from fu

ERT (G) the end-to-end response time of the workflow G

℘ power set

⊎ disjoint union

⇓ restriction of a function

↦→ map an element in the function domain

|A| the cardinal number of a set

Gp, Gb, Gc, Gl parallel, branch, cycle, self-loop structures, respectively

SPp the set of the simple path whose transition probability is 1

SPb the set of the simple path whose transition probability is not 1

Gpr probabilistic DAG used in the performance model

Gdl de-looped graph (DAG) used in the cost model

Gperf the graph used in the performance model (eq. (4.5))

Gcost the graph used in the cost model (eq. (4.11))

SRT (G) the RT of a parallel/branch/cycle/self-loop

EI(G) the expected number of iterations of a cycle/self-loop

DI(G) the delay incurred by iterations of a cycle/self-loop

fB a B-node used in procedures of processing branches

fP a P-node used in procedures of processing parallels

PGC price per GB-second of FaaS functions

PI price per invocation of FaaS functions
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Figure 4.1: Four types of structures in the serverless workflow.

Namely, we define the subgraph Gp = (Vp, Ep) as a parallel structure, such that

|SPp| > 1, where

Vp = {f ∈ V : f is in s for some s ∈ SPp}

Ep = {e ∈ E : e is in s for some s ∈ SPp}

SPp = {s ∈ ASP (fu, fv) : TPP (s) = 1}

As the parallel shown in Figure 4.1, the vertices and edges of the parallel structure

are depicted in blue color. There are two simple paths with the transition probability

of 1 between f1 and f4, namely f1e1f2e3f4 and f1e2f3e4f4. Functions f2 and f3 are

processed in parallel, indicating that f1 leverages interactions to invoke f2 and f3 at

the same time after finishing its execution, and f4 starts execution only after both f2

and f3 are completed.

4.2.2 Branch

Let us consider all simple paths between vertices fu ∈ V and fv ∈ V . If there is more

than one simple path whose transition probability is less than 1, but can sum up to 1

in total, we define the subgraph composed of those simple paths with the transition

probability not equal to 1 as a branch structure .

50



Namely, we define the subgraph Gb = (Vb, Eb) as a branch structure, such that

|SPb| > 1, where

Vb = {f ∈ V : f is in s for some s ∈ SPb}

Eb = {e ∈ E : e is in s for some s ∈ SPb}

SPb = {s ∈ ASP (fu, fv) : TPP (s) ̸= 1}∑︂
s∈SPb

TPP (s) = 1

As the branch shown in Figure 4.1, the vertices and edges of the parallel structure

are depicted in green color. There are two simple paths between f1 and f4 whose

transition probabilities are not equal to 1, but can add up to 1. Hence, vertices

and edges in simple paths f1e1f2e3f4 and f1e2f3e4f4 form a branch structure. After

completing f1, the workflow continues with only one path in the branch, depending

on the satisfied condition.

4.2.3 Cycle

Considering all simple paths between vertices fu ∈ V and fv ∈ V , we define the

subgraph Gc = (Vc, Ec) as a cycle structure between vertices fu and fv, where

Vc = {f ∈ V : f is in s for some s ∈ ASP (fu, fv)}

Ec = {e ∈ E : e is in s for some s ∈ ASP (fu, fv)} ⊎ {(fv, fu)}

such that

– 0 < P (fv, fu) < 1, invoking fu again after completing fv is a possible event;

–
∑︁

s∈ASP (fu,fv)

TPP (s) = 1, transition probabilities of all simple paths between fu

and fv sum up to 1;

– SUB(fu, fv) is a DAG, the subgraph between fu and fv does not have any loops

and cycles;
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– SPL (fstr, fu) < SPL(fstr, fv), compared to fv, fu is closer to the entry point;

–
∑︁

(fv ,fi)∈out(fv)
P (fv, fi) = 1, the transition probabilities of all edges starting from

fv add up to 1.

As the cycle shown in Figure 4.1, vertices f1 and f2 and edges e1 and e2 form

a cycle, depicted in orange color. After completing f2, depending on the satisfied

condition, the workflow will either invoke f3, or enter the cycle by invoking f1.

4.2.4 Self-loop

A self-loop is a special case of a cycle with only one vertex and one edge. Considering

a function fu connected by an edge (fu, fu) to itself, we define the subgraph Gl =

(Vl, El) = ({fu}, {(fu, fu)}) as a self-loop structure , such that

– 0 < P (fu, fu) < 1, invoking fu again after completing fu is a possible event;

–
∑︁

(fu,fi)∈out(fv)
P (fu, fi) = 1, the transition probabilities of all edges starting from

fu add up to 1.

As the self-loop depicted in red color shown in Figure 4.1, after accomplishing f1, the

workflow will either invoke f2, or enter the self-loop by invoking f1 again.

4.3 Performance Modeling

We propose a performance model to get the end-to-end response time of the serverless

workflow. As M , NI, and C defined in Gs are relevant to cost instead of performance,

we do not consider them in the performance model for brevity. Specifically, we only

consider the following graph with part of elements in Gs, defined as

Gperf = (V,E, P,D,RT,RTTP ) (4.5)

With different methods for different structures, the performance model trims the

graph of Gperf by removing, adding, and modifying vertices, edges and elements, and
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converts Gperf into a probabilistic DAG, denoted as Gpr. We define the probabilistic

DAG as

Gpr = (V,E, P,D,RT,RTTP ) (4.6)

such that

– Gpr is a DAG without any cycles and loops;

–
∑︁

s∈ASP (fstr,fend)

TPP (s) = 1, the transition probabilities of all simple paths be-

tween the start node and the end node in Gpr can sum up to 1.

The end-to-end response time of the serverless workflowGperf , denoted asERT (Gperf ),

is defined as Equation (4.7).

ERT (Gperf ) =
∑︂

s∈ASP (fstr,fend)

TPP (s)DLY (s) (4.7)

where ASP (fstr, fend) is the set of all simple paths between the start node and end

node in Gpr, which is the probabilistic DAG converted from Gperf by the proposed

performance model.

To convert a serverless workflow into a probabilistic DAG, the model needs to re-

move cycles and self-loops from the workflow and trim parallel paths. In the following

subsections, we describe how the performance model processes four types of struc-

tures in the serverless workflow and converts the workflow graph into a probabilistic

DAG.

Algorithm 1 gives the pseudo-code of the performance model. Figure 4.2 illustrates

the step-by-step changes of the workflow graph when the performance model works

on the serverless workflow shown in Figure 1.4. In Figure 4.2, the interim B-node and

P-node (B1, B2, P1, and P2) are depicted in bold. The value of RTTP of the B-node

retains the response time and probability of each path in the branch. The number on

each edge represents the transition probability, and the transition delay is considered

as zero for brevity.
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Algorithm 1: Performance modeling algorithm

Input: a serverless workflow Gs = (Vs, Es)
Output: the average end-to-end response time of the serverless application

1 G′ ← Gs;
2 while G′ is not a probabilistic DAG (using eq. (4.6)) do
3 loop list ← find self loops(G′); ▷ section 4.2.4

4 for each self-loop Gi in loop list do
5 Process self-loop Gi; ▷ Section 4.3.4

6 end
7 cycle list ← find cycles(G′); ▷ section 4.2.3

8 for each cycle Gi in self loop list do
9 Process cycle Gi; ▷ Section 4.3.3

10 end
11 parallel list ← find parallels(G′); ▷ section 4.2.1

12 for each parallel Gi in parallel list do
13 Process parallel Gi; ▷ Section 4.3.2

14 end
15 branch list ← find branches(G′); ▷ section 4.2.2

16 for each branch Gi = (Vi, Ei) in branch list do
17 Process branch Gi; ▷ Section 4.3.1

18 end

19 end
20 ERT ←

∑︁
s∈ASPG′ (fstr,fend)

TPP (s) ·DLY (s); ▷ eq. (4.7)

21 return ERT

54



Start End
1 10.9 430ms

256MB

f7
560ms
512MB

f1
150ms
256MB

f6RTTPB2=
{(1160,0.3),
(650,0.7)}

B2
11

0.1 Cycle

Start End
1 1430ms

256MB

f7RTTPB2=
{(1160,0.3),
(650,0.7)}

B2
11560ms

512MB

f1
318.11ms

f6 1

6. after processing the cycle

a probabilistic DAGperformance modeling alg. completed
end-to-end response time: 2111.11 ms

1
f5r5

c5
650ms
1024MB

f5
Start End

1

1

1

0.1 1560ms
512MB

f1 0.9150ms
256MB

f6
430ms
256MB

f7

320ms
768MB

f2 RTTPB1=
{(260,0.7),
(840,0.3)}

B1
1

1

Parallel

3. after processing the branch

Start End1
0.3

0.7 1

0.1 10.9

1

560ms
512MB

f1
150ms
256MB

f6
1160ms

P1

650ms

P2

430ms
256MB

f7

Branch

Start End
1

1

1

0.7

1

1

1

0.90.1 0.1
1

320ms
768MB

f2

f3
260ms
640MB

840ms
2048MB

f40.3

560ms
512MB

f1
150ms
256MB

f6

f5r5
c5
650ms
1024MB

f5

430ms
256MB

f7

Branch

Start End
1

1

1

0.7

1

1

0.8

0.90.1 0.1
1

0.2

320ms
768MB

f2

f3
260ms
640MB

840ms
2048MB

f40.3

560ms
512MB

f1
150ms
256MB

f6

f5r5
c5
520ms
1024MB

f5

430ms
256MB

f7

1. initial workflow graph

Self-loop

2. after processing the self-loop

4. after processing the parallel

5. after processing the branch

Figure 4.2: Steps of the performance modeling algorithm solving the end-to-end re-
sponse time of the serverless application.

4.3.1 Process Branches

The workflow selects only one path in the branch depending on the satisfied condi-

tion. Each condition has a probability specified by the transition probability function.

Hence, the probability of executing each path in the branch is the transition proba-

bility of the path. The main idea of processing the branch is to simplify the workflow

by replacing branch paths with an interim B-node while retaining the information,

including response time and probability of each branch path.

Consider a branch Gb = (Vb, Eb) between vertices fu and fv, let SRT denote the

response time of a structure, we can obtain the branch structure’s expected value of

the response time by Equation (4.8).

SRT (Gb) =
∑︂

s∈ASP (fu,fv)

TPP (s)DLY (s) (4.8)

After calculating the expected value of the delay, the performance model trims Gs

by first removing all vertices in Vb except fu and fv from V , namely, we get a smaller

set of vertices, denoted as V ∗, defined as

V ∗ = V \ (Vb\ {fu, fv})
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Correspondingly, we remove all elements relevant to removed vertices by restricting

functions as follows:

E
∗
= E ⇓ V ∗, P

∗
= P ⇓ V ∗, D

∗
= D ⇓ V ∗

RT
∗
= RT ⇓ V ∗, RTTP

∗
= RTTP ⇓ V ∗

Then, we add an interim vertex called “B-node”, denoted as fB, to V , and connect

fu, fB, and fv in sequence by adding two edges (fu, fB) and (fB, fv) to E. We extend

functions in the graph tuple as follows:

V ′ = V ∗ ⊎ {fB}

E ′ = E∗ ⊎ {(fu, fB) , (fB, fv)}

P ′ = P ∗ [(fu, fB) ↦→ 1, (fB, fv) ↦→ 1]

D = D∗ [(fu, fB) ↦→ 0, (fB, fv) ↦→ 0]

RT ′ = RT ∗ [fB ↦→ SRT (Gb)−RT (fu)−RT (fv)]

The above procedures simplify the workflow graph, as multiple vertices in the

branch are replaced by an interim B-node, whose response time is the weighted average

response time of branch paths. However, simply using the weighted average value

would compromise the accuracy of the performance model. An example is when a

branch is in parallel to other paths, as shown in Figure 4.2. For instance, let us

consider a branch with two paths whose response time is 1290 ms and 1870 ms,

with the transition probability of 0.7 and 0.3, respectively. There is another path

in parallel to these two branches, whose response time is 1360 ms. In this case,

the response time of these three paths combined should be either 1360 ms or 1870

ms, and the probability of each case is equal to 0.7 and 0.3, respectively. However,

if the weighted average value is used as the branch’s delay, the response time of

these three paths would be a deterministic value of 1464 ms. Therefore, we retain

the information, including response time and probability of each branch path using

RTTP , and leverage Algorithm 2 to accurately model the response time in such cases.
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Specifically, we define RTTP as a function RTTP : V → ℘ ([0,+∞)× [0, 1]),

which represents all possible values of the response time and corresponding probability

of all original paths replaced by interim B-nodes. When processing branches and

adding B-nodes, we have

RTTP ′ = RTTP ∗ [fB ↦→ B]

where

B =
{︂(︂

DLY
−
(s) ,TPP (s)

)︂
|∀s ∈ ASP (fu, fv)

}︂
After processing branches, the workflow graph is updated as

Gperf ← G′ = (V ′, E ′, P ′, D′, RT ′, RTTP ′)

4.3.2 Process Parallels

For a given parallel structure Gp = (Vp, Ep) between vertices fu and fv, the workflow

executes all parallel paths after completing fu and invokes fv only after finishing the

executions of all paths. Hence, as shown in Equation (4.9), the response time of a

parallel structure is the longest delay of parallel paths in it. Therefore, the main idea

of processing the parallel is to retain the parallel path with the longest delay and

prune other paths.

SRT (Gp) = max {DLY (s) |∀s ∈ ASP (fu, fv)} (4.9)

For a parallel structure without any interim B-nodes in any paths, the delay of

each path is deterministic. We can directly use Equation (4.9) to get the delay of

the parallel structure, which is also deterministic. However, if there are B-nodes in

any paths, the delay of the parallel structure may have a probability distribution

instead of being a fixed value. Since the response time of the B-node, recorded by

RTTP , varies based on probabilities under different conditions, the delay of the path

with B-nodes is subject to a probability distribution, making the delay of the parallel
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structure probabilistic. In this case, the performance model leverages Algorithm 2 to

get a set of tuples, denoted as RTTP List, which has all possible values of response

time and corresponding probabilities of the parallel structure.

After calculating the delay using Equation (4.9) or deriving RTTP List, similar

to the trimming step in Section 4.3.1, the performance model removes all vertices in

Vp except fu and fv from V, and then restricts functions. We have

V ∗ = V \ (Vp\ {fu, fv})

E∗ = E ⇓ V ∗, P ∗ = P ⇓ V ∗, D∗ = D ⇓ V ∗

RT ∗ = RT ⇓ V ∗, RTTP ∗ = RTTP ⇓ V ∗

Then, we add the interim vertex called “P-node” to V. If the parallel structure

does not have any B-nodes, we only add one P-node, denoted as fP and let

V ′ = V ∗ ⊎ {fP}

E ′ = E∗ ⊎ {(fu, fP ) , (fP , fv)}

P ′ = P ∗ [(fu, fP ) ↦→ 1, (fP , fv) ↦→ 1]

D′ = D∗ [(fu, fP ) ↦→ 0, (fP , fv) ↦→ 0]

RT ′ = RT ∗ [fP ↦→ SRT (Gp)−RT (fu)−RT (fv)]

If Vp contains B-nodes, by using Algorithm 2, we have RTTP List that has M

tuples of the response time and probability as

RTTP List = {(rt1, pr1) , (rt2, pr2) , ..., (rtM , prM)}

Then, M P-nodes will be added as follows:

V ′ = V ∗ ⊎Mi=1 {fPi
}

E ′ = E∗ ⊎Mi=1 {(fu, fPi
) , (fPi

, fv)}

for all 1 ≤ i ≤M :

P ′ = P ∗ [(fu, fpi) ↦→ pri, (fpi , fv) ↦→ 1]

D′ = D∗ [(fu, fpi) ↦→ 0, (fpi , fv) ↦→ 0]

RT ′ = RT ∗ [fpi ↦→ rti]
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After processing parallels, the workflow graph is updated as

Gperf ← G′ = (V ′, E ′, P ′, D′, RT ′, RTTP ′)

4.3.3 Process Cycles

For processing cycles, the main idea is to remove the cycle and add the delay incurred

by cycle iterations to the last vertex’s response time in the cycle. For a given cycle

Gc = (Vc, Ec) between vertices fu and fv, the expected value of the number of cycle

Gc iterations, denoted as EI (Gc), namely the average number of times the workflow

enters the cycle after completing fv, can be expressed as Equation (4.10).

EI (Gc) =
∞∑︂
n=1

[1− P (fv, fu)] [P (fv, fu)]
n−1 (n− 1)

=
P (fv, fu)

1− P (fv, fu)
(4.10)

By multiplying the expected number of cycle iterations and the time required for

each iteration, we can calculate the expected delay incurred by cycle iterations.

DI (Gc) =

⎛⎝ ∑︂
s∈ASP (fu,fv)

TPP (s)DLY (s) +D (fv, fu)

⎞⎠EI (Gc)

In terms of the response time of the cycle structure, the delay incurred by cycle

iterations is equivalent to increasing the response time of fv by the same amount of

time. Therefore, the performance model first removes the edge (fv, fu) as

E ′ = E\ {(fv, fu)}

Then, the model modifies the transition probability, edge delay, and vertex response

time as follows:

P ∗ = P

[︃
e ↦→ P (e)

1− P (fv, fu)

]︃
, for all e ∈ out(fv)

D′ = D [(fv, fu) ↦→ 0]

P ′ = P ∗ [(fv, fu) ↦→ 0]

RT ′ = RT [fv ↦→ RT (fv) +DI (Gc)]
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Algorithm 2: Get RTTP List

Input: a parallel Gp = (Vp, Ep) between fu ∈ Vp and fv ∈ Vp with n paths
Output: a set of tuples RTTP List which has all possible values of response

time and corresponding probability of GP

1 for path si ∈ ASP (fu, fv) do
2 RTTP Listi ← []; ▷ results list

3 if si has m ≥ 1 B-nodes {fB1 , fB2 , ..., fBm} then
4 RT wo B ← DLY − (si)−

m∑︁
k=1

RT (fBk
)

▷ the delay of the path without B-nodes

5 cmb← RTTP (fB1)× ...×RTTP (fBm);
▷ all combinations of the RT and probability of all

B-nodes by the Cartesian product

6 for each combo Cj in cmb do
7 RTCj ←

∑︁
(rtk,tpk)∈Cj

rtk +RT wo B;

▷ a possible response time of si
8 TPCj ←

∏︁
(rtk,tpk)∈Cj

tpk;

▷ the corresponding probability

9 append (RTCj, TPCj) to RTTP Listi;

10 end

11 else ▷ the path that does not have any B-nodes

12 RTC ← DLY − (si); ▷ RT is deterministic

13 append (RTC, 1) to RTTP Listi; ▷ probability is 1

14 end

15 end
16 rttp comb← RTTP List1 × ...×RTTP Listn;
17 RTTP List← [];
18 for each combo Cj in rttp comb do
19 RTCj ← max {rtk|∀ (rtk, tpk) ∈ Cj}; ▷ a possible RT of Gp, use

maximum value due to parallelism

20 TPCj ←
∏︁

(rtk,tpk)∈Cj

tpk; ▷ the corresponding prob.

21 append (RTCj, TPCj) to RTTP List;

22 end
23 return RTTP List
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After processing cycles, the workflow graph is updated as

Gperf ← G′ = (V,E ′, P ′, D′, RT ′, RTTP )

4.3.4 Process Self-loops

The procedure to process self-loops is similar to that used to process cycles. Given

a self-loop Gl = ({fu}, {(fu, fu)}), similarly using Equation (4.10), we can calculate

the expected number of self-loop iterations as EI (Gl) = P (fu,fu)
1−P (fu,fu)

, and the delay

incurred by self-loop iterations as DI (Gl) = EI (Gl) (RT (fu) +D (fu, fu)). Then,

the performance model updates the graph as

Gperf ← G′ = (V,E ′, P ′, D′, RT ′, RTTP )

where

P ∗ = P

[︃
e ↦→ P (e)

1− P (fu, fu)

]︃
, for all e ∈ out(fu)

D′ = D [(fu, fu) ↦→ 0]

P ′ = P ∗ [(fu, fu) ↦→ 0]

E ′ = E\ {(fu, fu)}

RT ′ = RT [fu ↦→ RT (fu) +DI (Gl)]

4.4 Cost Modeling

In this section, we introduce a cost model to get the average cost of the serverless

workflow. Since FaaS platforms leverage a GB-second billing model depending on the

allocated memory size, rounded-up function duration, and the number of invocations,

we consider the following graph with part of elements in Gs, defined as

Gcos t = (V,E, P,RT,M,NI, C) (4.11)

All vertices representing FaaS functions have an amount of allocated memory,

identified by M . The allocated memory of 0 represents such a vertex might be a
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structural node without any cost, like start and end nodes, or other cloud services

to which the GB-second billing model is not applicable. The rounded-up function

duration can be directly calculated using the response time of each function defined

by RT . For a FaaS function fu ∈ V , its average cost per application execution can

be calculated as Equation (4.12), where PGS is the price per GB-second and PPI

is the price per invocation (the cost of handling the invocation request). For vertices

representing cloud services with other pricing models, the model obtains their cost

from users’ input.

C (fu) = NI (fu)

(︃⌈︃
RT (fu)

100

⌉︃
·M (fu) · PGS + PPI

)︃
(4.12)

Each vertex fu ∈ V has an average number of invocations, denoted as NI(fu),

which depends on the structure of the serverless workflow. Branches can reduce the

number of invocations of vertices in them since the transition probability of paths in

branches is less than 1. Conversely, cycles and self-loops can lead to more than one

invocation of functions in them, and the number of invocations depends on the ex-

pected value of the number of cycle/self-loop iterations, calculated as Equation (4.10).

Hence, for a given cycle Gc = (Vc, Ec) between vertices fu and fv, we have the ex-

pected value of the number of invocations of each vertex fi ∈ Vc as

NI (fi) = 1 + EI(Gc) =
1

1− P (fv, fu)
,∀fi ∈ Vc (4.13)

Similarly, for a self-loop Gl = ({fu}, {(fu, fu)}), we have

NI (fu) = 1 + EI(Gl) =
1

1− P (fu, fu)
(4.14)

The cost model first leverages Equation (4.13) and Equation (4.14) to calculate

the average number of invocations of vertices in cycles and self-loops. Then, similar

to procedures of processing cycles and self-loops in the performance model, the cost

model updates the edge and transition probability to remove cycles and self-loops

from the graph. After removing all cycles and self-loops, considering the impact of
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parallels and branches, the cost model updates NI of each vertex based on the sum

of transition probabilities of all simple paths from the start node to it. By following

these steps, we convert Gcost into a de-looped graph used for cost modeling, denoted

as Gdl. The average cost of the serverless workflow can be calculated by
∑︁
f∈V

C (f).

Algorithm 3 gives the pseudo-code of the cost model. An example of using the cost

model for a serverless application is discussed in Section 4.5.

Algorithm 3: Cost modeling algorithm

Input: a workflow graph Gcost

Output: the average cost for each execution of the serverless application
1 G′ ← Gcost;
2 for all f ∈ V , let NI(f)← 1; ▷ initialization

3 while G′ is not a DAG do
4 loop list ← find self loops(G′); ▷ section 4.2.4

5 for self-loop Gl = (fu, (fu, fu)) in loop list do
6 NI(fu)← 1

1−P (fu,fu)
; ▷ eq. (4.14)

7 E ← E\ {(fu, fu)}; ▷ remove the loop edge

8 for each edge e in out(fu) do

9 P ← P
[︂
e ↦→ P (e)

1−P (fu,fu)

]︂
; ▷ updat prob.

10 end

11 end
12 cycle list ← find cycles(G′);
13 for each cycle Gi = (Vi, Ei) in cycle list do
14 For each f ∈ Vi update NI(f) using eq. (4.13);
15 Remove the cycle edge;
16 Update transition probabilities of outgoing edges; ▷ similar to

steps for self-loops

17 end

18 end
19 for each vertex f ∈ V do
20 tp sum←

∑︁
s∈ASPG′ (fstr,f)

TPP (s) ;

21 if tp sum < 1 then
22 NI ← NI [f ↦→ NI (f) · tp sum];
23 end
24 cost sum← cost sum+ C(f); ▷ eq. (4.12)

25 end
26 return cost sum
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Figure 4.3: The de-looped workflow of the serverless application.

4.5 Example and Analysis

The implementation of the performance model is presented in Algorithm 1. Based on

definitions of structures in the serverless workflow, as mentioned in Section 4.1, the

algorithm identifies structures in the workflow and leverages different procedures to

process structures, defined in Section 4.3, to trim the workflow graph to a probabilistic

DAG and obtain the end-to-end response time of the application. Figure 4.2 illustrates

the step-by-step changes of the workflow graph when the performance model works

on the serverless workflow shown in Figure 1.4. The average end-to-end response time

of the application is 2111.11 ms.

Algorithm 3 describes the implementation of the cost model. Taking the serverless

workflow showing in Figure 1.4 as an example, after completing the first while loop,

the algorithm trims the workflow to a de-looped graph shown in Figure 4.3, in which

the three numbers on each function represent the response time, allocated memory

and the average number of invocations, respectively. The number on each edge rep-

resents the transition probability. Then, in the for loop, the algorithm updates the

average number of invocations for each function again and calculates the cost of the

applications. The average cost of the application is $41.82 per 1 million executions.

Let us consider the worst-case scenario and analyze the time complexities of the
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performance and cost models. Under the definition of the serverless workflow men-

tioned in Section 4.1, the most complex workflow is composed of as many cycles and

self-loops as possible, since the cycle and self-loop structures require the least number

of vertices, compared to the parallel and branch structures. Figure 4.4 illustrates

the workflow under the worst-case scenario, where the workflow is composed of n

functions, (n + 2) vertices, n(n+3)+2
2

edges, n(n−1)
2

cycles, and n self-loops. The time

complexities for detecting self-loops and cycles are O(|E|) and O(C(|V | + |E|)), re-

spectively, where C is the number of cycles. The performance model and cost model

can process cycles and self-loops in O(n2) and O(n) time, respectively. Hence, the

time complexities for the performance and cost modeling under the worst-case sce-

nario are O(n6) and O(n5), respectively, where n is the number of functions in the

workflow. We empirically analyze the AWS and Azure official repositories [121, 122].

The average number of functions in serverless applications in this repository, orches-

trated by Amazon Step Functions or Microsoft Azure Functions, is less than 5. We do

not find any serverless application in the repositories resembling the worst-case topol-

ogy. The most common typologies appear to be sequential, paralleled, and branched.

Our proposed models can calculate the performance and cost of a worst-case topology

application with 27 functions and 406 edges in less than a second on a laptop with

a 2.70GHz Intel Core i7-3740QM processor and 16 GB of memory. This shows the

applicability of the models for now and the foreseeable future.

4.6 Experimental Evaluation

We implement the performance and cost models using Python 3.8 and validate them

by conducting experiments on five serverless applications deployed on AWS.

4.6.1 Experimental Design

To evaluate performance and cost models, we design five serverless applications com-

posed of a various number of FaaS functions with mixed types of workload. We
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Figure 4.4: The workflow of the worst-case scenario.

deploy functions on AWS Lambda and employ AWS Step Functions as the serverless

application coordinator. AWS Step Functions is a serverless workflow coordination

service that combines multiple Lambda functions and other serverless services offered

by AWS into responsive serverless applications [40].

We design FaaS functions with three different types of workload, namely CPU

intensive, disk I/O intensive, and network I/O intensive. The CPU-intensive work-

loads include string hashing, floating-point arithmetic, and recursive calculation. The

disk-intensive workload is to write and read several files to the hard disk drive. The

network-intensive workload is designed to download and upload a number of files from

and to the AWS S3 bucket. We develop sixteen functions with different input sizes

and types of workload and host them on AWS Lambda.

By leveraging AWS Step Functions, we develop five serverless applications using

those sixteen functions, which are App8, App10, App12, App14, and App16. The

numeric suffix of the application name represents the number of functions in the ap-

plication. From App8 to App16, we increase the number of functions from eight to

sixteen, as well as the number of structures (parallels, branches, cycles, and self-loops)

in the application workflow. As a result, the complexity of the workflow grows ac-
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Figure 4.6: The experimental design for evaluating performance and cost models.

cordingly. Besides, each application has a combination of all three types of workloads,

making them truly representative of actual serverless applications on the cloud. The

workflow of five serverless applications is shown together in Figure 4.5. The num-

ber on each edge represents the transition probability. The workflow of App16 is as

shown. The workflow of the other four applications can be obtained by removing and

replacing all edges and functions in the corresponding box(es) with an edge whose

transition probability is 1. The transition delay is defined using the delay model of

AWS Step Functions. The applications are composed of functions with three different

types of workload depicted by three colors.

We deploy sixteen functions on AWS Lambda and obtain their average duration

under a feasible memory configuration by invoking each of them 720 times. Five afore-

mentioned serverless applications are developed and deployed on AWS Step Functions.
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For repeatability and rigorousness, we follow the methodological principles proposed

by Papadopoulos et al. [123] and execute repeated experiments and long runs. As

the timeline shown in Figure 4.6, We execute each application for five periods of two

hours with a two-hour interval between two consequent periods. During each period,

each application is executed continuously with a 10-second interval between two con-

sequent invocations. For each execution period, we discard executions in the first and

last 10 minutes to avoid any transient fluctuations in performance and only adopt

invocations between them. By doing so, for each application, logs of 3,000 invocations

are ready for analysis.

4.6.2 Experimental Result

By giving the workflows and the average duration and allocated memory size of

functions as inputs, we leverage the proposed performance and cost models to obtain

the average end-to-end response time and cost of five serverless applications. By

analyzing logs of 3,000 invocations for each application, we compare the results of

performance and cost models with the duration and billing logs reported by AWS.

Figure 4.7 and Figure 4.8 illustrate the experimental evaluation result of the per-

formance and cost models, where the box plot shows the maximal value, 25%, 50%,

75% percentiles, and the minimum value of response time and cost. The notch shows

the 95% confidence interval for the median of response time and cost. The average

accuracy for performance modeling is 98.75%, while the average accuracy for cost

modeling is 99.97%.

As the number of functions in the application increases from 8 to 16, the workflow

becomes more complex in terms of structures. As is evident from the figures, both

the average end-to-end response time and cost derived by the proposed performance

and cost models are very close to the real values reported by AWS. Regardless of the

complexity of the workflow, the accuracy of the predicted average end-to-end response

time and cost is over 97.5%. Such results indicate the high accuracy of the proposed
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Figure 4.7: Experimental evaluation result of the performance model.
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Figure 4.8: Experimental evaluation result of the cost model.

performance and cost models.
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4.7 Summary

In this chapter, we achieved Objective 2 by proposing and evaluating two analytical

models of serverless applications. For a given orchestration and performance and

memory configuration of a serverless application, the proposed models can obtain the

average end-to-end response time and cost of the application. To evaluate the models,

we developed serverless applications with eight to sixteen functions and deployed

them on AWS. The accuracy of predicted average end-to-end response time and cost

is 98.75% and 99.97%, respectively. The evaluation results indicate the high accuracy

of the proposed performance and cost models.
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Chapter 5

Performance and Cost
Optimization for Serverless
Applications

In this chapter, to accomplish Objective 3, we propose a heuristic algorithm named

Probability Refined Critical Path (PRCP) Algorithm to optimize the performance and

cost of serverless applications. As mentioned in Chapter 1, the response time of the

function varies with the allocated memory, and so does the cost. Therefore, developers

can tune the performance and cost of the serverless application by changing the

allocated memory size of functions in the application. More specifically, as described

by the motivation, very practical problems in serverless computing are to get the

best performance under a limited budget or satisfy the performance constraint by the

minimum cost. Therefore, Objective 3 leads to two performance and cost optimization

problems. In this chapter, we first introduce the performance profile, then define the

optimization problem, and present and evaluate the PRCP algorithm.

For consistency and brevity, we continue to use the definitions, notations, and

performance and cost models presented in Chapter 4. Besides notations defined in

Table 4.1, Table 5.1 lists all other notations used in this chapter.
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Table 5.1: Definition of notations used in Chapter 5.

Notation Definition

W (s) weight of a simple path s

BCR Benefit-cost ratio

TH BCR threshold

β(fu) the slope of the performance-memory curve of fu

5.1 Performance Profile of Serverless Functions

On FaaS platforms, increasing the memory of a function can improve the CPU and

IO performance, but it does not necessarily reduce the response time of the function

significantly, especially when the performance becomes insensitive to the memory, i.e.,

the amount is large enough. As shown in Figure 1.3, when the allocated memory is

greater than 1792 MB, the response time remains almost the same, and at this time,

the continued increase in memory size incurs additional cost due to the rounding and

granularity of billed duration. Similarly, albeit a larger allocated memory size leads to

a higher price per second of billed duration, the cost may decrease with larger memory,

especially before the performance becomes insensitive. For the performance-memory

curve of functions, as the allocated memory size increases, response time decreases

first and then levels out since the performance becomes insensitive. However, because

of the rounding and billing granularity, there are large fluctuations in the cost-memory

curve of functions.

Therefore, as mentioned in the best practices for working with AWS Lambda Func-

tions, to find an optimal allocated memory size satisfying both the trade-off between

performance and price and the required memory size for the function execution, a

performance profiling phase is highly recommended to test the performance of the

FaaS functions [119]. In the performance profiling phase, the function is invoked us-

ing the payload with the average input size multiple times under different allocated

memory sizes, and the average duration of invocations is logged. By doing so, we can
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acquire a set of viable memory sizes and a series of function response times under

different memory sizes. Figure 2 demonstrates the performance-memory curve of a

function obtained in the performance profiling phase. Explicitly, we let MOpt denote

a memory option function mapping the function to its viable memory options, defined

as Equation (5.1).

MOpt : V → ℘ (N) (5.1)

The performance profile of a function fu, which describes the response time of

the function under different allocated memory sizes, is defined as Equation (5.2).

PF (fu,memv) is the response time of fu with the allocated memory size of memv,

where fu ∈ V and memv ∈MOpt(fu).

PF : ⊎
f∈V
{{f} ×MOpt (f)} → [0,+∞) (5.2)

Considering the performance profile of functions, in this section, we extend the

definition of the serverless workflow defined in Chapter 4 as

Gs = (V,E, P,D,RT,RTTP,M,NI, C,MOpt, PF )

where MOpt and PF are defined as Equation (5.1) and Equation (5.2), respectively.

Let MOpt (f) ≜ ∅ for all f is not a FaaS function.

5.2 Problem Statement

Considering a serverless workflowGs with n functions, where V = {f1, f2, ..., fn−1, fn},

we define π as a memory configuration of the workflow, such that

π ∈MOpt (f1)×MOpt (f2)× ...×MOpt (fn)

π(f) denotes the size of the allocated memory of the function f in this configuration.

Let ERT π denote the end-to-end response time of Gs obtained by the performance

model and Cπ (fu) denote the cost of the function fu obtained by the cost model,

under the memory configuration π, such that (i) M(fi) = π(fi), for all 1 ≤ i ≤ n,
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(ii) RT (fi) = PF (fi, π (i)), for all 1 ≤ i ≤ n. For a given budget limit BC, and a

performance constraint PC, we define the following two optimization problems.

5.2.1 Best Performance under Budget Constraint

Find a memory configuration π that achieves the minimum average end-to-end re-

sponse time of the application with the average cost less than or equal to the budget

BC. We call such a problem the Best Performance under Budget Constraint (BPBC)

problem.
argmin

π
ERT π (Gs)

subject to
n∑︂

i=1

Cπ(fi) ≤ BC
(5.3)

5.2.2 Best Cost under Performance Constraint

Find a memory configuration π that achieves the minimum average cost of the applica-

tion with the average end-to-end response time less than or equal to the performance

constraint PC. We call such a problem the Best Cost under Performance Constraint

(BCPC) problem.

argmin
π

n∑︂
i=1

Cπ(fi)

subject to ERT π (Gs) ≤ PC

(5.4)

5.3 Problem Complexity Analysis

We prove that BPBC and BCPC problems in the serverless computing paradigm

are fundamentally more complex variants of the multiple-choice knapsack problem

(MCKP). MCKP is formulated as follows. Given n sets N1,N2, ...,Nn of items, where

each item in each set has a profit and a weight, by selecting exactly one item from

each set, the optimization problem is to find a selection combination ς ∈ N1 × N2 ×

... × Nn such that ς maximizes the total profit while the total weight within the

capacity. MCKP has been applied to many optimization problems, including resource
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allocation and workflow optimization in parallel computing and microservice-based

applications[90, 92].

In BPBC and BCPC problems, the n functions, viable allocated memory sizes of

each function MOpt, and the memory configuration π are equivalent to n sets, a num-

ber of items in each set, and selection combination ς in MCKP, respectively. For the

BPBC problem, BC corresponds to the knapsack capacity constraint, −PF (f,Mk)

can be viewed as the profit of the function f ∈ V with the allocated memory size of

Mk ∈ MOpt(f), and corresponding cost C(f) is equivalent to the weight. Instead

of simply accumulating values, the total profit in the BPBC problem represents the

end-to-end response time of the application, should be derived by the performance

modeling algorithm defined in Algorithm 1. Similarly, for the BCPC problem, PC

corresponds to the knapsack capacity constraint, the cost C(f) of the function f

under the memory Mk ∈ MOpt(f) can be viewed as the profit of the function, the

response time PF (f,Mk) can be deemed as the weight.

Compared to MCKP, the higher complexity of BPBC and BCPC problems lies

in calculating the total profit and total weight, which leverages the polynomial-time

performance and cost models defined in Chapter 4. Besides, for a given memory

configuration and corresponding response time, we can check whether the average end-

to-end response time and total cost under such a configuration satisfy the constraints

in polynomial time. Hence, BPBC and BCPC problems in the serverless computing

paradigm are fundamentally more complex variants of MCKP.

As MCKP has proven to be an NP-complete problem without any solutions in

polynomial time, unless P =NP [124], we have to resort to a heuristic algorithm to

solve BPBC and BCPC problems.

5.4 Probability Refined Critical Path Algorithm

In this section, we propose a heuristic algorithm based on the critical path method

to solve BPBC and BCPC problems.
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5.4.1 Critical Path Method

Critical path method (CPM) is a heuristic approach for scheduling problems, which

optimizes the scheduling scheme by identifying and rescheduling the path with the

longest execution time [125]. CPM has proven to be an effective solution to scheduling

problems in many areas, including the scientific workflow system [90], distributed

computing framework [88], IaaS paradigm [89], and CaaS paradigm [92]. However,

previous studies have largely applied CPM to DAG workflows. As mentioned in

Section 1.5.2, there can be cycles and loops in the serverless workflow, to which the

traditional CPM is not applicable.

5.4.2 Algorithm Design

We propose a Probability Refined Critical Path Algorithm (PRCP) to solve BPBC

and BCPC optimization problems for non-DAG serverless workflows. To work with

non-DAG workflow topology, PRCP refines the transition probability of edges and

simple paths as well as the weight of simple paths based on the transition proba-

bility and leverages a weight-based definition of the critical path. PRCP recursively

optimizes the memory of functions on the critical path using a greedy manner and

obtains the best memory configurations satisfying the constraint.

Based on the definition of the serverless workflow, due to transition probabilities

and structures in the workflow, the path with the longest delay may not be the

critical path in terms of the response time and cost. Therefore, we need to re-define

the critical path to take the transition probability of the path and iterations incurred

by cycles and loops into account.

For a simple path sk = f1e1f2e2...en−1fn, we define the weight of sk as Equa-

tion (5.5).

W (sk) =
n∑︂

i=1

RT (fi)NI (fi)TPP (sk) (5.5)

Given a set of M simple paths, we define the path with ith greatest weight as the
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ith critical path, such that 1 ≤ i ≤ M . We denote FindCriticalPath(G, i) as a

procedure that returns the ith critical path in G.

Given a function fu and a new memory size memv ∈ MOpt(fu), by assigning the

new allocated memory size memv to fu, we define the change of end-to-end response

time and the change of cost, as ∆ERT (fu,memv) and ∆C (fu,memv), respectively,

where

∆ERT (fu,memv) = ERT γ (Gs)− ERTcurr

∆C (fu,memv) =
n∑︁

i=1

Cγ (fi)− Ccurr

such that (i) ERTcurr and Ccurr are the end-to-end response time and cost under the

previous configuration π; (ii) γ (fu) = memv; (iii) γ (fi) = π (fi) for all 1 ≤ i ≤ n and

i ̸= u.

Algorithm 4 demonstrates the pseudocode of the PRCP algorithm solving the

BPBC problem. The input are the budget constraint BC and a serverless work-

flow Gs with n functions, where V = {f1, f2, ..., fn−1, fn}. PRCP first initializes

the workflow by employing the minimum memory configuration πmin, such that

πmin (fi) = min (MOpt (fi)) for all 1 ≤ i ≤ n. The workflow has the largest end-to-

end response time under the minimum memory configuration. PRCP recursively finds

the critical path and calculates ∆ERT and ∆C under all possible allocated memory

size of all functions in the critical path. Suppose there are functions and memory

size options that can reduce the cost without increasing the end-to-end response time

of the workflow, namely ∆C < 0 and ∆ERT ≤ 0, PRCP selects the function and

memory size resulting in the largest cost decrease. If not, PRCP chooses the function

and memory size achieving the largest end-to-end response time decrease within the

budget constraint. If there is no feasible memory size option within the tth critical

path, where t is initialized as 1, PRCP will find the (t+1)th critical path in the next

iteration, and so on. The iteration ends when there is no feasible memory size option

in the least critical path with the current surplus.

Algorithm 5 provides the pseudocode of the PRCP algorithm solving the BCPC
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Algorithm 4: PRCP-BPBC

Input: Budget constraint BC, serverless workflow
Gs = (V,E, P,D,RT,RTTP,M,NI,C,MOpt, PF )

Output: memory configuration π satisfying eq. (5.3)
1 M ←M [f ↦→ min (MOpt (f))] , ∀f ∈ V ; ▷ use the minimum memory

configuration πmin

2 Gdl ← (V,E ′, P ′, RT,M,NI, C,MOpt, PF ); ▷ Get the de-looped graph

using steps in Section 4.4

3 NSP ← |ASPGdl
(fstr, fend)|; ▷ number of simple paths in Gdl

4 πcurr ← πmin; ▷ current memory configuration

5 Ccurr ←
n∑︁

i=1

Cπmin(fi); ▷ current cost

6 ERTcurr ← ERT πmin (Gs); ▷ current end-to-end RT

7 t ← 1;
8 while BC − Ccurr > 0 and t ≤ NSP do
9 scp ← FindCriticalPath (Gdl, t); ▷ find tth critical path in Gdl

10 for all functions fi in scp do
11 for all selectable memory memj ∈MOpt(fi) do
12 Calculate ∆ERT (fi,memj) and ∆C (fi,memj);
13 end

14 end
15 if ∃memv ∈MOpt (fu): ∆ERT (fu,memv) ≤ 0 and ∆C (fu,memv) < 0

then
16 ftmp,memtmp ← argmin

fu,memv

∆C (fu,memv);

17 else

18 ftmp,memtmp ← argmin
fu,memv

∆ERT (fu,memv) s.t.

∆C (fu,memv) ≤ BC − Ccurr and ∆ERT (fu,memv) < 0. If there
are multiple functions and memory values that achieve the same
maximum ∆ERT , select fu and memv that leads to the smallest ∆C;

19 end
20 if ftmp and memtmp exist then
21 M ←M [ftmp ↦→ memtmp];
22 RT ← RT [ftmp ↦→ PF (ftmp,memtmp)];

23 πcurr ← πcurr (ftmp) ≜ memtmp;
24 Ccurr ← Ccurr +∆C (ftmp,memtmp);
25 ERTcurr ← ERTcurr +∆ERT (ftmp,memtmp);

26 else
27 t← t+ 1;
28 end

29 end
30 return πcurr
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problem. For the BCPC problem, the PRCP algorithm first initializes the work-

flow by employing the maximum memory configuration πmax, such that πmax (fi) =

max (MOpt (fi)) for all 1 ≤ i ≤ n. The workflow has the shortest end-to-end response

time under the maximum memory configuration. PRCP recursively finds the criti-

cal path, but starts with the path with the smallest weight, then calculates ∆ERT

and ∆C under all possible allocated memory size of all functions in that path. Sup-

pose there are functions and memory size options that can reduce the end-to-end

response time of the workflow without incurring additional cost, namely ∆ERT < 0

and ∆C ≤ 0, PRCP selects the function and memory size leading to the largest end-

to-end response time decrease. If not, PRCP chooses the function and memory size

resulting in the largest cost decrease within the performance constraint. If there is

no feasible memory size option within the tth critical path, where t starts with the

number of simple paths in Gdl, PRCP will find the (t− 1)th critical path in the next

iteration, and so on. The iteration ends when there is no feasible memory size option

even in the most critical path with the current surplus in terms of the performance.

5.4.3 Benefit/Cost Ratio Greedy Strategies

PRCP algorithm is essentially a greedy heuristics for BPBC and BCPC problems. The

steps with a box in Algorithm 4 and Algorithm 5 are greedy strategies. For instance,

in the BPBC problem, the greedy strategy is to find the fu and memv ∈ MOpt(fu)

in each critical path iteration, which can lead to the greatest end-to-end response

time reduction. However, the local optimization achieved by such a strategy might

compromise the global optimization. As mentioned in Section 5.1 and shown in

Figure 1.3, after the performance becomes insensitive to the memory, the performance

gain of the function brought by the increase in memory is insignificant, and due to

rounding and billing granularity, the cost may increase significantly.

To avoid bad optimization solutions, we introduce the benefit/cost ratio (BCR)

into greedy strategies. Instead of arbitrarily maximizing the end-to-end response

79



Algorithm 5: PRCP-BCPC

Input: Performance constraint PC, serverless workflow
Gs = (V,E, P,D,RT,RTTP,M,NI, C,MOpt, PF )
Output: memory configuration π satisfying eq. (5.3)

1 M ←M [f ↦→ max (MOpt (f))] ,∀f ∈ V ; ▷ use the maximum memory

configuration πmax

2 Gdl ← (V,E ′, P ′, RT,M,NI, C,MOpt, PF ); ▷ Get the de-looped graph

using steps in Section 4.4

3 NSP ← |ASPGdl
(fstr, fend)|; ▷ number of simple paths in Gdl

4 πcurr ← πmax; ▷ current memory configuration

5 Ccurr ←
n∑︁

i=1

Cπmax(fi); ▷ current cost

6 ERTcurr ← ERT πmax (Gs); ▷ current end-to-end RT

7 t ← NSP;
8 while PC − ERTcurr > 0 and t ≥ 1 do
9 scp ← FindCriticalPath (Gdl, t); ▷ find tth critical path in Gdl

10 for all functions fi in scp do
11 for all selectable memory memj ∈MOpt(fi) do
12 Calculate ∆ERT (fi,memj) and ∆C (fi,memj);
13 end

14 end
15 if ∃memv ∈MOpt (fu): ∆C (fu,memv) ≤ 0 and ∆ERT (fu,memv) < 0

then
16 ftmp,memtmp ← argmin

fu,memv

∆ERT (fu,memv);

17 else

18 ftmp,memtmp ← argmin
fu,memv

∆C (fu,memv) s.t.

∆ERT (fu,memv) ≤ PC−ERTcurr and ∆C (fu,memv) < 0. If there
are multiple functions and memory values that achieve the same
minimum ∆C, select fu and memv that leads to the smallest ∆ERT ;

19 end
20 if ftmp and memtmp exist then
21 M ←M [ftmp ↦→ memtmp];
22 RT ← RT [ftmp ↦→ PF (ftmp,memtmp)];

23 πcurr ← πcurr (ftmp) ≜ memtmp;
24 Ccurr ← Ccurr +∆C (ftmp,memtmp);
25 ERTcurr ← ERTcurr +∆ERT (ftmp,memtmp);

26 else
27 t← t− 1;
28 end

29 end
30 return πcurr
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time reduction, the strategy is to find the configuration achieving the optimal BCR.

In other words, the idea is to find the configuration leading to the optimal benefit

for its cost. We propose three BCR greedy strategies for each optimization problem

and integrate them into the PRCP algorithm. For the BPBC problem, strategies are

MAX, ERT/C, and RT/M . For the BCPC problem, strategies are MAX, C/ERT ,

and M/RT .

In the MAX strategy for the BPBC problem, the reduction in end-to-end response

time is the benefit, and the cost is the increased cost of the workflow incurred by the

configuration. Namely, for the function fu and a selectable memory size memv ∈

MOpt(fu), BCR is defined as

BCR (fu,memv) =

⃓⃓⃓⃓
∆ERT (fu,memv)

∆C (fu,memv)

⃓⃓⃓⃓
(5.6)

The MAX strategy finds the fu and memv ∈MOpt(fu) in each critical path iteration

leading to the maximum BCR, which is defined as Equation (5.6).

The ERT/C strategy has the same definitions of benefit and cost as the MAX

strategy. A BCR threshold, denoted as TH, is leveraged. The ERT/C strategy

keeps a record of the BCR of the configuration in the previous critical path iteration,

denoted as BCRpre. Instead of simply maximizing BCR, the ERT/C strategy finds

fu and memv ∈ MOpt(fu) that results in the maximum BCR such that BCR ≥

BCPpre · TH.

In the RT/M strategy, we introduce a BCR threshold TH and consider the two-

point slope of the performance-memory curve as the BCR, namely

BCR (fu,memv) =
PF (fu,memv+1)− PF (fu,memv)

memv+1 −memv

(5.7)

wherememv+1 ∈MOpt(fu) is the adjacent selectable memory size such thatmemv+1 >

memv. For each function fi ∈ V , the RT/M strategy algorithm first calculates the

slope of the performance-memory curve by the least squares regression, denoted as

β (fi). Then, the algorithm removes all memory options from the viable memory
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Table 5.2: Summary of BCR Greedy Strategies.

Strategy BCR Def. Maximize Subject To

BPBC Problem

W/O BCR N/A ERT Reduction None

MAX eq. (5.6) BCR None

ERT/C eq. (5.6) BCR BCR ≥ BCRpre · TH

RT/M eq. (5.7) ERT Reduction BCR (fi,memj) ≥ β (fi) · TH

BCPC Problem

W/O BCR N/A Cost Reduction None

MAX eq. (5.6) −1 BCR None

C/ERT eq. (5.6) −1 BCR BCR ≥ BCRpre · TH

M/RT eq. (5.7) −1 Cost Reduction BCR (fi,memj) ≥ β (fi) · TH

options whose BCR is smaller than β (fi) · TH. After this step, the memory option

function satisfies β (fi) · TH for all 1 ≤ i ≤ n and all memj ∈ MOpt(fi). In each

critical path iteration, the algorithm finds the fu and memv ∈MOpt(fu) resulting in

the greatest end-to-end response time reduction.

Correspondingly, MAX, C/ERT , and M/RT are three BCR greedy strategies for

the BCPC problem, where the BCR is defined as the multiplicative inverse of the BCR

defined for the BPBC problem. In the M/RT strategy, the algorithm calculates the

slope of the memory-performance curve. Table 5.2 gives the summary of the original

PRPC algorithm and BCR greedy strategies. It contains BCR, optimization goal

in each iteration, and the conditions to which the optimization is subject. Besides

the s.t. conditions mentioned in Table 5.2, as specified in the pseudocode of the

PRPC algorithm, all strategies should also satisfy ∆C (fu,memv) ≤ BC − Ccurr

and ∆ERT (fu,memv) < 0 for the BPBC problem, and ∆ERT (fu,memv) ≤ PC −

ERTcurr and ∆C (fu,memv) < 0 for the BCPC problem.
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5.5 Experimental Evaluation

5.5.1 Experimental Design

To evaluate the proposed performance and cost optimization solution, namely the

PRCP algorithm, we develop a serverless application named App6. As the name sug-

gests, App6 is composed of 6 functions with three types of workload (CPU-intensive,

disk-intensive, network-intensive). For generality, App6 is designed to have all four

types of structures, namely the parallel, branch, cycle, and self-loop.

As described in Section 5.1, to optimize the performance and cost of the server-

less application, a performance profiling phase is required to get the feasible memory

configuration MOpt and performance profile PF of serverless functions in the appli-

cation. We deploy functions on AWS Lambda, which allows the allocated memory

to vary between 128 MB and 3,008 MB in 64MB increments, resulting in 46 possible

choices. We stipulate that all 46 memory sizes are feasible choices for all functions.

For each function, we obtain its performance profile by the performance profiling

phase, during which the function is invoked 100 times under each feasible memory

size, and the duration is logged.

In order to measure the accuracy of solutions given by the PRCP algorithm, an

exhaustive search is necessary to obtain the performance and cost of App6 under

all possible memory configurations. However, 6 functions with 46 possible memory

choices lead to 9.47 billion states, making the exhaustive search computationally

unfeasible. Therefore, we trim the number of memory choices while retaining the

trend of the response time-memory size curve by sampling the performance profile.

After sampling, the viable memory size of each function varies between 128 MB and

3,008 MB in 192 MB increments, 16 choices left. Using the proposed performance and

cost models, we exhaustively obtain the average end-to-end response time and cost of

App6 under 16,777,216 different memory configurations. As evidenced in Section 4.6,

the performance and cost models can accurately give the average end-to-end response
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Figure 5.1: The workflow of App6.

time and cost of the serverless application. Therefore, despite the fact that we do

not perform the test on AWS Step Functions to get the performance and cost of

App6 under 16,777,216 configurations, which is financially and practically unfeasible,

the average end-to-end response time and cost derived from proposed models can be

regarded as actual values.

We choose the series of 100 equidistant values between the minimum cost and the

maximum cost as the budget constraints and execute the PRCP algorithm to solve

the BPBC problem with four types of greedy strategies. Similarly, we use the series of

100 equidistant values between the minimum and the maximum end-to-end response

time as the performance constraints and solve the BCPC problem. We compare the

best performance and the best cost given by the PRCP algorithm with the actual

value derived by the exhaustive search under each constraint value.

5.5.2 Experimental Result

Figure 5.1 shows the workflow of App6, in which the legend is the same as Figure 4.5.

There are 1 parallel, 1 branch, 1 cycle, and 1 self-loop in App6. The performance

profile of functions in App6 is illustrated as Figure 5.2. The allocated memory size

varies between 128 MB and 3,008 MB in 64MB increments, resulting in 46 feasible

memory choices.

Figure 5.3 depicts the best performance for the BPBC problem achieved by the
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Figure 5.2: The performance profile of 6 functions in App6.

PRCP algorithm with four greedy strategies. The BCR threshold is 0.2. The budget

constraints are 100 equidistant values between $58.86 (minimum cost) and $163.90

(maximum cost). The average accuracy of the best answer is 97.40%. The best

answer is the minimum average response time among solutions. Considering the best

performance among solutions given by four strategies, compared to the ideal value,

the accuracy of the algorithm is calculated. For the 100 budget constraints, the

average accuracy of the PRCP algorithm is 97.40%. Figure 5.4 illustrates the best

cost achieved by the PRCP algorithm solving the BCPC problem. The BCR threshold

is 0.2. The performance constraints are 100 equidistant values between 2748.24 ms

(minimum ERT) and 25433.08 ms (maximum ERT). The average accuracy of the best

answer is 99.63%. The best answer is the minimum average cost among solutions.

For the 100 performance constraints, the average accuracy of the PRCP algorithm is

99.63%. As is evident from Figure 5.3 and Figure 5.4, the accuracy of different greedy

strategies varies with different budget and performance constraints. Therefore, the

best method is to employ all four greedy strategies in the PRCP algorithm and select

the best solution that is closest to the target performance or cost constraint.
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Figure 5.3: The result of the PRCP algorithm solving the BPBC problem.
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Figure 5.4: The result of the PRCP algorithm solving the BCPC problem.

5.6 Summary

In this chapter, we achieved Objective 3 by presenting a heuristic-based performance

and cost optimization algorithm for serverless applications. For a given serverless

application orchestration and performance profile of functions, the PRCP algorithm

can obtain the memory configuration to solve two optimization problems: the best
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Figure 5.5: Overview of the proposed approach for modeling and optimization of
performance and cost of serverless applications in chapter 4 and Chapter 5.

performance under budget constraint and the best cost under performance constraint.

To avoid bad optimization solutions, we introduce four greedy strategies based on the

benefit/cost ratio into the PRCP algorithm. The proposed algorithm was evaluated

by real experiments on AWS. It can achieve the optimal configurations of serverless

applications with over 97% accuracy on average.

As there is a tight relationship between performance and cost models and opti-

mization algorithms, in Figure 5.5, we present an overview of the proposed approach

in Chapter 4 and Chapter 5. The proposed approach can accomplish three types of

tasks (depicted by three different colors): (i) Deploy user-provided function source

code and payload to FaaS platform, invoke functions and query the execution log,

and give the performance-memory curve of functions as shown in Figure 1.3 as the

output. (ii) Take the workflow orchestration of the serverless application and memory

configuration and performance (response time) of functions as inputs, process inputs

using the performance and cost models, and give the application end-to-end response

time and the average cost under the given configuration as the output. (iii) For

user-defined performance and cost constraints of a workflow, leverage the proposed

performance cost models and optimization algorithms with the performance-memory

curve of functions, and give the satisfying memory configuration that achieves the
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best performance under a budget constraint or the minimum cost under a perfor-

mance constraint as the output. The cloud provider part can be replaced with any

FaaS platform. We use AWS for experimental evaluation in Chapter 4 and Chapter 5.
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Chapter 6

Autonomic Security Management
for IoT Smart Spaces

In this chapter, we address Objective 4 by presenting a solution to autonomic se-

curity management for IoT smart spaces. We focus on the microservice-based IoT

systems where each IoT device provides certain services, and the interactions between

users and smart spaces could be viewed as dynamically enabling and disabling ser-

vices provided by different devices. Due to the heterogeneity of context, we propose

a generic ontology named Secure Smart Space Ontology (SSSO) for describing dy-

namic contextual information in security-enhanced smart spaces. Based on SSSO, we

develop a MAPE-k engine that can monitor and analyze the context, and plan and

execute countermeasures to achieve autonomic security control. As the evaluation,

we conduct a case study on a current BlackBerry customer problem.

6.1 Background and Problem Formulation

Coupled with the accelerating development of computing and telecommunication

technology is the fact that more and more interconnected computing devices, or

IoT devices, are utilized by enterprises to facilitate business growth. These devices

can be mobile such as smartphones and smart bands, or stationary, like smart doors

and smart boards. In any case, these devices are equipped with sensors, software,

and micro-controllers, that use the underlying network to transfer collected data and
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control points [126]. Embedded sensors and smart devices have turned the environ-

ments around us into smart spaces that could automatically evolve depending on the

need of users and adapt to the new conditions. While smart spaces are beneficial and

desired in many aspects, they could be compromised and expose privacy, security or

render the whole environment a hostile space in which regular tasks cannot be accom-

plished anymore. Also, the extraordinary heterogeneity of devices and protocols of

IoT devices presents several daunting challenges to developers and managers in a com-

mercial scenario. They need to handle an incredible diversity of hardware, software,

and protocols to enable interactions between different systems. When a company

wants to deploy new devices, developers have to redevelop some software embedded

in previous systems to ensure compatibility with new devices, making the delivery

time very long. They also need to cope with complex relationships developed among

different devices and correctly map them. Security is always one of the essential con-

cerns for enterprises. How to ensure the safety of connected devices used in critical

businesses and avoid disclosure of sensitive information is the vital issue [127]. There

is a trade-off between convenience and security. IoT devices can enable automation

and intelligent process in enterprises, such as automated door access control and pri-

vate messaging service. However, IoT devices are also vulnerable to different types of

attacks due to high exposure, limited computational resources, and low reliability. In

fact, because of the high cost of development, deployment, and maintenance of IoT

devices, plus security concerns, the widespread use of IoT solutions in enterprises is

just the aspiration, not the reality [44].

In order to tackle the crux of popularizing and applying IoT solutions in enter-

prises, IoT systems must be able to meet the enterprise-level security bar without

incurring prohibitive costs of development, deployment, and management. Systems

built on IoT devices must be reliable and scalable and have fine-grained security man-

agement components. Fundamental changes should be made in system architecture

and security management policies at different levels, including hardware, network,
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and software, to address business pain points. The following example highlights the

security challenges in a smart space.

Let us consider a smart factory embedded with smart devices. There is a smart

camera to monitor the workshop, a smart door lock for entrance control, and several

sensors to collect machine process data. It is 1:00 am, and one of the sensors finds

that the temperature of the fluid in one pipeline is abnormally high and sends the

warning data to the production management system. The production management

system automatically shuts down one of the machines in the workshop and sends

an alert to a maintenance specialist. Private messaging service on his smartphone

informs the maintenance specialist, then he immediately opens his laptop, logs in to

the web interface provided by the production management system, and sees real-time

process data. After locating the problem, he grants entry permissions to several on-

site technicians and asks them to fix the machine. The smart door lock authenticates

those technicians by their smart bands. The specialist helps them remotely with

smart cameras. In minutes, the team solves the problem, and the machine is running

again. This application scenario is very straightforward and comprehensible. How-

ever, handling security risks in this scenario is a nightmare for developers and factory

managers. For example, there is a risk of an intruder accessing the workshop using

a stolen smart band. Developers determine to use two-factor authentication, detect

intrusion by identifying the mismatched face using the smart camera, and then take

appropriate action. They must redevelop the software of smart cameras to be able

to recognize those technicians’ faces. If the workshop manager purchases new IoT

devices used for authentication, developers must re-design the whole authentication

control loop and develop features to support new authentication methods.

What they do is only to tackle one possible security risk. If a sensor in the workshop

malfunctions, if the smart door locker manufacturer adds fingerprint recognition, or if

an interloper uses a hacked account to access machine process data, developers have to

repeatedly analyze the situation, develop new software, and deploy the new system
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for risk mitigation. Since such a procedure is mainly based on manual work, the

possibility of human error is very high. Moreover, it is conceivable that there are many

other security risks to be discovered by trusted developers and managers. That is to

say: We can not always have on-site professionals monitoring the whole environment

and finding all possible risks. Such a workflow is not suitable for IoT management

in commercial scenarios. Hence, autonomic security management is indispensable for

IoT systems, which could make IoT systems more secure and reliable. The costs

of developing, deploying, and managing such systems would also be considerably

reduced.

6.2 MAPE-K

The core of autonomic security management for IoT is that IoT systems can self-detect

various types of vulnerabilities, automatically analyze situations, and autonomically

learn and implement appropriate security policies. In this case, manual work will

be minimized. Therefore, the chance of human failure is less, and security policies

will be more concrete. Since IoT systems can be viewed as distributed computing

systems, we can leverage the autonomic computing paradigm, introduced by IBM

[128], to enable self-managed security by designing and implementing a Monitor-

Analyze-Plan-Execute-Knowledge (MAPE-k) loop plus knowledge base, namely the

MAPE-k method. Hereafter, we use “MAPE-k engine” and “autonomic security

manager” interchangeably. Figure 6.1 shows the high-level architecture of autonomic

security management for IoT with the MAPE-k loop. In the following, we will describe

this architecture in more detail.

Monitoring is the first step of the MAPE-k method, and the monitored objects

include but are not limited to the working status of connected devices, changes in

context, explicit user requests, and data streams. Obviously, the challenge here is to

develop applications for heterogeneous IoT devices and collect data from them. Con-

sidering the IoT system as a microservice-based application composed of multiple
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Figure 6.1: The MAPE-k loop and autonomic security management for IoT smart
spaces.

microservices, we can adapt some technical patterns widely used in microservice-

based web applications and use them in IoT systems, such as API, SDN, containers,

access control, to enable high-level development and integrated security policies [27].

Following the view of microservice-based IoT systems, we can assume the IoT system

has the ability to sense changes and report anomalies through different microservices.

We can also abstract the autonomic manager as a running microservice in the sys-

tem. Once the anomaly or change is reported to the manager, it will automatically

assess the security issue and plan how to mitigate against potential threats by either

automatically adapting security policies and implementing them or asking people in

the smart space to do explicit actions. All relevant data and actions are stored in the

knowledge to help the system reason about threats and make appropriate responses to

them. Microservice-based architecture can also offer more options for threat mitiga-

tion. For example, when a sensor malfunctions, by unified service discovery, the IoT

system can smoothly find the available alternative device which provides the same

service.
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6.3 Secure Smart Space Ontology

6.3.1 Ontology Design

The ontology usually adheres to the RDF data model expressed as a collection of

triples [96]. The underlying structure of the RDF data model can be abstracted as

a graph that represents the entities and relationships developed among them. Web

Ontology Language (OWL), proposed by World Wide Web Consortium (W3C), is

an extension of RDF. Additionally, OWL provides a collection of standard relation-

ships used for RDF [129]. The three components of the OWL ontology are Classes,

Properties, and Individuals. Classes provide a basic abstraction of common concepts

of things and group things with similar features together. Properties, as the name

suggests, describe the relationship between two entities. There are two types of prop-

erties: object property used to link two non-data-value entities and data property

used to link a non-data-value entity to a data value entity. In our case, we used

object properties to describe relationships among IoT devices, and used data prop-

erties to describe the points of devices/services (e.g., sensor points, communication

endpoints) and detailed information of individuals described by the ontology (e.g.,

name, description, metadata in JSON). Individuals are class members (like instances

in object-oriented programming), and an individual can belong to multiple classes.

The statement to describe the relationship between two individuals is usually writ-

ten as “individualA property individualB”, and can be easily converted into the RDF

triple like (individualA, property, individualB).

Certainly, we adhere to the practice of OWL to design the Secure Smart Space

Ontology (SSSO) shown in Figure 6.2, in which each box is a top-level class in SSSO.

The solid lines represent object properties. Examples of relationships among classes

are described by dotted lines. We use the Protege OWL tool [130] to design and

validate the ontology that we propose in this paper. The SSSO consists of five top-

level classes, namely Service Class, Equipment Class, User Class, Policy Class, and
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Figure 6.2: The overview of Smart Secure Space Ontology (SSSO).

Context Class. Figure 6.3 depicts the class hierarchy of SSSO. Now, we discuss each

class in more detail.
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Figure 6.3: The class hierarchy of SSSO.

Service Class: We followed the service-oriented approach and microservice-based

IoT architecture [27] where each connected device provides certain services encapsu-

lated as microservices. For example, the smart speaker provides Play Video service

(play audio from an external or internal audio source), Record Audio service (record

the voice and save the audio file to a local or remote location), and Voice Authen-

tication service (recognize identity by voice). IoT devices in the smart space can

95



communicate with other components (e.g., other smart devices, control center, and

MAPE-k engine) in the space through the publish-subscribe messaging service (e.g.,

MQTT), application programming interface (e.g., HTTP(s) API request), or remote

procedure call (RPC). The interactions among users and smart spaces can be viewed

as dynamically enabling and disabling services provided by different devices. For in-

stance, if a meeting attendee wants to use the smart speaker to record the meeting,

she can send a request from any available endpoints (e.g., recognized cell phone, con-

trol center, the smart speaker itself) to enable the Record Audio service on the smart

speaker.

Based on BlackBerry’s customer needs, we comprehensively analyze microservices

provided by various types of IoT devices deployed in security-critical businesses. By

considering the potential risks of services and connections between services and critical

data, we categorize services into four sub-classes: Authentication, Control, Data, and

Sense. Authentication Class contains security-critical services used for authentication

(e.g., voice authentication, password authentication). Control Class describes services

used for one-time control. The controlled resources can be security-critical (e.g., open

a door) and non-critical (e.g., change the brightness of a dimmable light). Services

regarding continuous critical data collection and access, such as voice recording and

video capturing, are classified as Data Class. Sense Class contains services that can

provide critical or non-critical contextual information, such as occupancy count and

environmental temperature. Such services are typically offered by sensors in the smart

space. The four sub-classes mentioned above also have their own sub-classes, which

refer to specific types of service.

Equipment Class: It belongs to devices under control in the smart space. Fol-

lowing the same method used for designing Service Class, we categorize devices into

six sub-classes. AV Class contains equipment relevant to multi-media content, in-

cluding audio and video. HVAC Class describes devices of HVAC systems. Lock

Class consists of critical devices for physical access control, such as smart door locks

96



and RFID key readers. Network Class contains equipment responsible for accessing

the Internet or the Intranet or storing and distributing digital content, such as file

servers and routers. Telecommunication Class describes telecommunication devices,

such as VOIP phones and smartphones. SmartHome Class contains smart devices

that do not fall into the above categories and do not provide any services or access

data that are security-critical. Examples are some non-critical and auxiliary devices,

such as dimmable lights and smart sweepers. Similarly, each sub-class in Equipment

Class has its own sub-classes, which refer to specific types of equipment.

User Class: It consists of users in the smart space. Each user is an individual

(class instance) of User Class.

Policy Class: It refers to the adaptive security-relevant policy implemented in

the security-enhanced smart space. Policy Class has eight sub-classes. We define

three classification levels in Classification Level Class, namely Classified, Normal, and

Public, to describe the classification level of instances in ontology, such as locations,

groups, and services. We define five levels of security, from SL-0 to SL-4 in Security -

Level Class to measure the security of the current environment and the trust level of

users. Similarly, five levels of threat, from TL-0 to TL-4, are defined in Threat Level

Class to indicate how a threat compromises the security of the current environment.

Generally, to ensure security, enabling service and keeping it running require both

the security level of the smart space and the trust level of the service requester are

equal to or greater than a certain threshold depending on services and context. A

threat may degrade the security level of the environment depending on its severity

and context, and may have a countermeasure described in Threat Mitigation Policy

Class.

For better adaptability, the required security level for enabling a service and the

threat level of a threat can be dynamic depending on the context of the smart space.

Besides, system managers may implement access policies to achieve dynamic access

control, such as role-based, group-based, and context-based access. Therefore, we
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define Security Assessment Policy Class to store security policies used to assess the

required security level of services. Similarly, Threat Assessment Policy Class consists

of policies to assess the severity of threats. User-defined access policies belong to

Access Policy Class. Details about security/trust/threat levels and adaptive policies

are discussed further in Section 6.4.

Context Class: It consists of contextual information that can help describe indi-

viduals of other classes more comprehensively. It is extendable so that ontology users

can define any additional information of entities using this class. Context Class also

acts as a knowledge base of the MAPE-k engine proposed in Section 6.4. Currently,

there are eight sub-classes in Context Class. Location Class describes the location of

individuals, such as the room to which a device/user belongs. Group Class groups

individuals, such as user groups and equipment groups. Metadata Class is for storing

metadata of individuals, such as the metadata of a service. We define five status

indicators, Active, Inactive, Suspended, Disabled, and Enabled, in Status Class to de-

scribe the status of individuals, such as the active status of a service. Variable Class

is for defining environmental variables of the system built on the ontology. Model

Class has Threat Model Class, Equipment Model Class, and Request Model Class as

its sub-classes, used for storing the template of threats, devices, and requests, which

are discussed further in Section 6.4. Communication Endpoint Class describes the

communication endpoint of services. The systems/services can communicate with

each other through protocol and endpoint address described by Communication -

Endpoint Class. Based on communication protocols, Communication Endpoint Class

has three sub-classes, namely HTTP, MQTT, and RPC. Individuals that do not fall

into the above classes belong to Miscellaneous Class. Ontology users can define any

additional information of entities in it.

Event Class: The event-driven architecture is an effective solution to the software

system, which is loosely coupled and highly distributed [131]. As the microservice-

based system typically has the same features, we introduce Event Class in ontology
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to describe events in the smart space. Event Class has three sub-classes. Point

Class refers to events regarding the value or status change of monitored endpoints.

Request Class describes users’ requests. Threat Class refers to the threat reported by

equipment or the anomaly in the space. Each sub-class in Threat Class represents a

specific type of threat/anomaly.

Object and Data Properties: Properties that map the relationships developed

among individuals and represent values are indispensable for describing resources,

policies, and context in the smart space. For instance, the security team wants to

enforce an access policy that only users belonging to the Facility Manager group can

access services provided by HVAC devices deployed in the building BLD-A. Object

properties are required to build connections among services, devices, users, policies,

and context, including locations and groups. Data properties are also needed to

provide the value of endpoints and the content of policies. Explicitly, we define the six

object properties and six data properties in SSSO. Figure 6.2 illustrates relationships

among classes and object properties defined.

For each top-level class in SSSO, we define an object property representing an

individual having a relationship with an individual in that class. The six object prop-

erties are hasService, hasEquipment, hasUser, hasPolicy, hasContext, and hasEvent,

respectively. For example, the statement that group Facility Manager has a user

Alice can be written as “Alice hasContext Facility Manager” or “Facility Manager

hasUser Alice”. Besides, hasName, hasDescription, hasMetadata, hasClass, hasValue,

and hasData are defined as six data properties. They are responsible for giving de-

tailed information about an individual in terms of its name, description, metadata,

relationship with a class, point value, and data content, respectively. For instance,

an HTTP communication endpoint edp1 with an address http://10.1.2.3/svc/record

can be written as “edp1 hasData ”http://10.1.2.3/svc/record”ˆ rdfs:Literal”.
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6.3.2 Features of Secure Smart Space Ontology

Overall, the proposed ontology has four features: service-oriented, security-enhanced,

event-driven, and context-rich. Now, we discuss each feature in more detail.
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Figure 6.4: The service-oriented feature.

Service-oriented: We follow the ideas of microservice-based IoT architecture,

where each device provides one or more services encapsulated as microservices. Each

service has at least one communication endpoint with a specific protocol for ser-

vice access. In the smart space backed by microservices, devices perform functions

through services, users enable and disable specific services to make the best use of

the space, services also detect and report status, events, and anomalies, and poli-

cies and preferences should be imposed on services to ensure security and achieve

autonomic management. With the efforts considering the service-oriented system, in

SSSO, Service Class is the core, and services in the smart space can be efficiently

and comprehensively described through individuals in other classes and object and

data properties. Figure 6.4 demonstrates the service-oriented feature and gives an

example of a capture video service described by SSSO.

As shown in Figure 6.4, the service named “capvidsvc1” is a capture video service

provided by the network camera named “cam1”. The service has an “Active’ status,

indicating that it is currently enabled and running. The service has a communication

endpoint with an address specified by a data property for controlling the service
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through RPC. The communication endpoint also has a request model describing the

metadata of the payload in the request. The system built on the ontology can follow

the request model to interact with such a service. Therefore, the class hierarchy and

object and data properties of SSSO can effectively describe the necessary information

of services in smart spaces backed by devices with the microservice architecture.

Figure 6.5 gives another example of describing details about the service regarding

policies and more contextual information.

Security-enhanced: We introduce Policy Class and Context Class into SSSO

for security enhancements. These two classes describe the access policy, securi-

ty/trust/threat levels and assessment policies, threat mitigation policy, and contex-

tual information regarding security. To prevent unauthorized activities, safeguard

sensitive data, and take countermeasures against threats, these security-relevant at-

tributes can be used to impose security control. Specifically, all activities in the smart

space should conform to specific security policies and satisfy several conditions de-

scribed by the ontology. For instance, enabling a service requires a certain security

level and trust level. A threat has a certain threat level, which could degrade the

current security level in the environment. Figure 6.5 demonstrates an example of

using SSSO to describe the security policy regarding a capture video service hosted

by a network camera. In this case Figure 6.5, enabling and maintaining the service

capvidsvc1 provided by cam1 requires that both the security level of the environment

Room1 and the trust level of the service requester Alice satisfy the level of SL-4. In

Section 6.4, we discuss the security-enhanced feature of SSSO and security policies in

more detail.

Event-driven: The event-driven architecture (EDA) is an effective solution to

the software system, which is loosely coupled and highly distributed [131]. As the

microservice-based IoT system typically has the same features, EDA can also be

applied to it. The event in EDA is a significant state change which the system should

process and respond to. Similarly, in the microservice-based system, anything that
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Figure 6.5: The security-enhanced feature.

happens in the system which changes the state or is going to change the state is

the event. The event in EDA is a significant state change which the system should

process, respond reasonably, and return the result. For instance, the user requesting

to enable a service shown in Figure 6.5 is a request event. After receiving such a

request event, the security manager built on SSSO adds such an event to Request

Class, analyzes the situation, namely checking if all required security policies are met

in this case. If satisfied, the system plans to enable the service and collect endpoint

information described by SSSO. Finally, the system follows the address, protocol,

request model to enable the service, and modify the status of the event and service

described in SSSO. The request event triggers such a process, and enabling service is

the result of the event. SSSO can well meet the needs of resources and information

descriptions at all stages in the entire event processing logic.

Context-rich: SSSO explicitly has Context Class that describes contextual infor-

mation that can help describe individuals of other classes more comprehensively. It is

extendable so that developers can define any additional information of entities using

this class, thus making the ontology scalable and compatible with other smart space

scenarios with different granularity levels, such as a smart home and smart buildings.

The rich context can also act as the knowledge base of the event processor, which

would be discussed in Section 6.4.

102



6.4 Autonomic Security Manager

In this section, we follow the MAPE-k method and propose an autonomic security

manager for IoT smart spaces built on top of resources described by SSSO. The

manager maintains the security of smart spaces adaptively and can be encapsulated

as a service running in the environment backed by microservice-based devices.
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Figure 6.6: Overview of the architecture of the proposed autonomic security manager.

6.4.1 Overall Architecture

The overview of the architecture of the proposed autonomic security manager is shown

in Figure 6.6, where interactions between layers are shown on the right. As shown in

Figure 6.6, there are four layers in the system, namely Resource and Context, Triple

Store, Manager, and Interface, marked in different colors. Now, we elaborate on four

layers in the system.

The first layer is Resource and Context, which represents the physical infrastruc-

ture, facilities, and context in smart spaces. Devices provide functionalities through

services encapsulated as microservices hosted on them. Each service exposes a com-

munication endpoint through which the service can be accessed, controlled, and con-

figured. For time series data provided by services in Sense Class, the endpoints keep

the records of their address and protocol for ease of retrieval by other components in
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the system. Using the SSSO, all resources and contextual information in this layer

are converted into the RDF graph expressed as a collection of RDF triples.

Triple Store layer is responsible for storing those RDF triples generated in Resource

and Context layer. We leverage Apache Jena to develop this layer. Apache Jena is an

open-source semantic web framework with various components that can provide high-

performance RDF storage and query services [132]. To fetch the knowledge expressed

by the RDF data model, SPARQL was used to query the RDF graph [133]. Human-

readable constraints and patterns of triples can be defined in SPARQL queries, and

the RDF graph will be traversed to find the match. Hence, we deploy this layer as a

container and exposes an API for querying the RDF graph using SPARQL.

Manager layer is where the MAPE-k method is implemented to achieve auto-

nomic security management of resources in smart spaces. The autonomic security

manager running in this layer monitors/receives events, analyzes situations, and au-

tonomically learns and implements appropriate actions. During such a process, the

manager queries/updates the resource and context RDF graph through the query

API provided by the Triple Store layer. If needed, the manager can also utilize the

communication middleware embedded in it, and follow the address, protocol, and

request model stored in RDF triples to communicate with endpoints. Details about

the implemented MAPE-k method and examples of manager’s interactions are dis-

cussed in Section 6.4.4. Manager layer is encapsulated as a Python package and is

convenient for developing components upon it.

Interface layer is a Django-based API encapsulated as a containerized service built

on the Manager layer. It is acting as an interface to communicate with the autonomic

manager, and responsible for exposing the methods provided by Manager layer in

the form of API, and receiving requests and returning results in JSON. In this way,

security management becomes a service in the smart space, and other resources in

the space can interact with it as if they interact with other services. Interface layer

has two main components, namely registry and event handler, which are detailed in

104



Section 6.4.2

6.4.2 Equipment Model and Device Registration

The registry in Interface layer is for registering new devices/services, and modify-

ing policies/context in the SSSO RDF graph. While adding a new device, either

an equipment model that describes the metadata about the device, or the UUID of

the equipment model already stored in the RDF Graph is required. The equipment

model contains the information including name, version, UUID, description, class the

device belongs to, provided services, communication endpoints together with proto-

cols, addresses, and request models, threats the device may report, and applicable

security policies. Figure 6.7 illustrates the schema of the equipment model JSON

format, and gives an example of describing a type of smart board using the equip-

ment model. As in practice, it is common to deploy a large number of devices of the

same model. Using the equipment model to describe devices can ease the workload

of register and manage devices. Besides registering devices, the equipment model can

provide important information to facilitate system development in the smart space.

When the event to register a new device received by the interface passes to the

manager, the first step is to parse the equipment model from the input and store

it in Equipment Model Class. If the UUID of an existent equipment model is pro-

vided, the system will retrieve the model from the RDF graph through the SPARQL

query. The manager creates an individual in the equipment class specified by the

model with a newly generated UUID as its IRI in the ontology. For future reference,

the UUID of an individual is the same as its IRI, and we use them interchangeably

in this paper. Then, for each service defined in the equipment model, the manager

inserts an individual in the corresponding service class, and adds detailed informa-

tion such as endpoints and provided contextual information in corresponding classes

defined by SSSO. Object and data properties are used to link newly-added individ-

uals. The procedure is similar for adding information regarding threats specified in
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the model. Figure 6.4 and Figure 6.5 together give a simple example about individ-

uals and properties added in the graph when a new device is registered. Following a

similar idea, when the registry receives the event to register/modify policies, users,

and any other contextual information, the manager leverages the SPARQL query to

add/delete/modify individuals and properties in the SSSO RDF graph.

{
    "uuid": "ae137288-3782-432d-8d83-d5cee733fe4b",
    "Equipment Model Name": "SmartBoard Model A",
    "Equipment Model Version": "0.1",
    "Last Update Timestamp": "2019-08-03T21:23:53.581662+00:00",
    "Equipment Class": "Smart_Board",
    "Service": [
        {
            "Name": "Play Audio Service on Type A Smart Board",
            "Service Class": "Play_Audio",
            "Resource Name": {
                "HTTP": "/audioplayer",
                "RPC": "/audioplayer"
            },
            "Required Security Level": "SL-2",
            "Request Model": "72caf2cf-2430-4536-8e8b-76cefd66e009"
        },
        {
            "Name": "Password Auth Service on Type A Smart Board",
            "Service Class": "Password_Authentication",
            "Resource Name": {
                "RPC": "/passwdauth"
            },
            "Trust Level Assessment Policy": "d8a07c6d-cbbd-4495-b88c-5b1e819e05d2"
        }
    ],

    "Threat": [
        {
            "Name": "Detect Unexpected Occupancy by Camera on Board",
            "Threat Class": "Unexpected_Occupancy",
            "Threat Assessment Policy": "eb6e49e3-d888-4d2e-b271-498dccf628d5"
        },
        {
            "Name": "Detect Network Traffic Sniffing",
            "Threat Class": "Sniffing_Attack",
            "Threat Level": "TL-4"
        }
    ],
    "Description": {
        "Manufacturer": "Foo Bar Inc.",
        "Screen Size": "75",
        "Screen Resoultion": "3840x2160"
    }
}
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Figure 6.7: An example of an equipment model of a smart board.

6.4.3 Adaptive Security Policy

The security manager and SSSO support both deterministic and adaptive policies.

As shown in Figure 6.3 and Figure 6.7, there are seven types of security policies

applicable to services and threats in SSSO. In this section, we discuss each type of

security policy and elaborate on the schema defining a security policy.

For safely accessing services, the most straightforward approach is to define a

specific required security level using individuals in Security Level Class. One example

is the service demonstrated in Figure 6.5. However, a fixed security level may not be

a good option, especially when the space manager desires to impose dynamic access

control based on context. The same problem holds for the threat level of threats. We

introduce adaptive policies in SSSO and the autonomic security manager to enable

adaptability to various contexts. The adaptive policy is written in SPARQL, which

can be evaluated by the manager and return a dynamic required security level/ posed

threat level depending on the information stored in the SSSO RDF graph. Figure 6.8

106



OPTIONAL {

?loc rdf:type ssso:Location.

?cl rdf:type ssso:Classification_Level.

?eq ssso:hasService ?Service.

?eq ssso:hasContext ?loc.

?loc ssso:hasPolicy ?cl.

FILTER (?cl NOT IN (ssso:Classified)). }.

BIND (IF(BOUND(?cl), ssso:SL-1, ssso:SL-2) as ?Security_Level)

Listing 1: Example of a security assessment policy. The required security level for
enabling services depends on the classification level of the room where the equipment
is located. If the classification level is “Classified”, the security level of SL-2 is re-
quired. Otherwise, SL-1 is needed. ?Service is a reserved variable that has the UUID
of the requesting service as its pre-defined value. ?User is pre-defined as the service
requester UUID. The evaluation result binds to the reserved keyword ?Security Level.

(a) depicts the schema of the adaptive policy. For the sake of performance, real-time

time series data is not synchronously updated in the SSSO graph. As the adaptive

policy may rely on the real-time data provided by services running on equipment

(usually sensors), we introduce an optional attribute named “Endpoint” in the schema

to let the manager first retrieve the latest data of the endpoint following the protocol,

address, and request model stored in the SSSO graph, and use “hasValue” data

property to insert/refresh the data of the endpoint. The UUID (IRI) of endpoints

to refresh can be specified by a SPARQL statement or given explicitly as a list.

After refreshing the value of endpoints, the security manager evaluates the statement

defined in the “Policy” attribute, obtains the dynamic result as security/trust/threat

level, and continues to process the event.

The table shown in Figure 6.8 (b) presents the rules for writing adaptive policy

statements. For each policy type, the table presents the reserved keywords in the

statement, the variable to which the result binds to, and the expected result. The

reserved keywords are the name of SPARQL variables that have pre-defined values

or to which the result binds. Listing 1 and Listing 2 give examples of a security

assessment policy and an access policy, respectively.
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?sl rdf:type ssso:Security_Level.

?eq ssso:hasService ?Service.

?eq rdf:type ?class.

?class rdfs:subClassOf* ssso:HVAC.

?User ssso:hasPolicy ?sl.

FILTER (?sl IN (ssso:SL-1, ssso:SL-2, ssso:SL-3, ssso:SL-4)).

?User ssso:hasContext ssso:HVAC_Manager.

Listing 2: Example of an access policy. Only authenticated users in the HVAC man-
ager group can access services provided by HVAC devices. The evaluation result of
the access policy is True/False, representing having access or not. No result bindings
are needed.

{
    "uuid": "4b809bab-1760-48f6-96a0-bc36fe81887b",
    "Name": "HVAC Control System Access Policy",
    "Priority":0,
    "Endpoint":?dvc ssso:hasService ...",
    "Policy":"?User ssso:hasContext ssso:HVAC_Manager ...",
}

Policy UUID, name, version, last
update time.

Policy priority, larger number means
higher priority. 
If the adaptive policy requires the
latest data from equipment (such as
sensor values), endpoints should be
specified here. Endpoints can be
specified either through a  SPARQL
statement or explicity given as a list.Adaptive policy written in SPARQL.

For a security/trust/threat assessment
policy, the SPARQL statement should
return a securty/trust/threat level as its
result. For an access policy, True/False
should be returned.

Type Reserved Keywords Evaluation Result
Security Assessment Policy ?Security_Level, ?User, ?Service ?Security_Level binds to a security level.

Trust Assessment Policy ?Security_Level, ?User, ?Service ?Trust_Level binds to a security level. 

Threat Assessment Policy ?Threat_Level, ?Equipment, 
?Threat_Class ?Threat_Level binds to a threat level.

Access Policy ?User, ?Service True or False

Threat Mitigation Policy
?Suspend, ?Disable, ?Enable,
?Threat_Level, ?Equipment, 
?Threat_Class, ?Env

?Suspend binds to services to suspend.
?Disable binds to services to disable.
?Enable binds to services to enable
?Threat_Level binds to a threat level

Endpoint SPARQL Statement ?Endpoint, ?User, ?Service, 
?Equipment, ?Threat_Class ?Endpoint binds to endpoints

(a) The schema of adaptive policies (b) Rules for writing adaptive policy statements

Figure 6.8: (a) The schema of adaptive policies and its description. (b) Guidelines
for writing adaptive policy statements.

6.4.4 MAPE-k Method for Autonomic Security Management

In this subsection, we discuss each phase of the MAPE-k method for autonomic

security management in smart spaces.

Monitor Phase : We follow the microservice architecture pattern and assume

that the IoT system has the ability to sense changes through various microservices

and report anomalies to the autonomic security manager through communication

protocols. In this case, there is no need to consider the low-level monitoring part.

We could view the manager as an event-driven engine, as what has been discussed

in Section 6.3. Once the anomaly or status change is reported to the autonomic

manager, the even processing loop will be triggered.

Analyze Phase : Once the event is reported to the manager, the manager will

analyze the event. We consider two types of events, the user’s request and the threat.
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Now we discuss the two cases separately.

When a user requests for enabling a service on a certain device, the endpoint will

report such a request that contains the requested service UUID and requester UUID

to the manager through the interface. After receiving the request, the manager first

analyzes the situation to determine if the service can be enabled and running in a

secure environment by querying the SSSO RDF graph using SPARQL. As each step

shown in the grey box in Figure 6.9 (a), the analysis contains the four processes, which

are detailed as follows: 1) Get the environmental context regarding the requested ser-

vice. Precisely, the location or the group of the service, the classification level of the

location or the group, and the trust level of the requester are acquired. 2) Obtain the

security policy that applies to the service. If multiple security policies are applicable,

the manager chooses the one with the highest priority. If the service does not have

any security policy applicable to it, a default security assessment policy will be ap-

plied. For the sake of security, the default policy stipulates that services in Data Class

and Control Class provided by equipment in AV Class, Lock Class, Network Class,

and Telecommunication Class require a security level of SL-4; otherwise, a security

level of SL-2 is required. 3) Evaluate the applicable adaptive security policy. For a

security assessment policy, the evaluation result is the required security level. For an

access policy, the request will be directly accepted if the evaluation returns True. If

the service has a fixed required security level, the manager skips this step. 4) Check

whether the condition satisfies the secure access equation defined in Equation (6.1),

and plan appropriate actions in the following phase depending on the equation eval-

uation result. If the user authenticates through service in Authentication Class, the

process is similar, but the manager obtains and evaluates the corresponding trust

assessment policy, and gives the user a trust level by modifying the SSSO RDF graph

through SPARQL.

In the event of a device reporting a threat, the manager generally goes through five

steps, as shown in the grey box in Figure 6.9 (b). 1) Get the environmental context
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regarding the threat. Specifically, the location or the group of the device, the current

security level, the class to which the threat belongs, and the active threats and services

in the location. 2) Obtain the threat policy that applies to the threat. Similarly, if

multiple policies are available, the manager chooses the one with the highest priority.

If the threat does not have any policy applicable to it, a default threat assessment

policy will be applied. To ensure security, any threat reported by a device belonging

to AV Class, Lock Class, Network Class, and Telecommunication Class, will pose a

threat level of TL-4. Otherwise, the threat level of TL-2 will be applied to the threat.

3) Obtain the threat mitigation policy if applicable. If there is a threat mitigation

policy, the manager will suspend/disable/enable services as stipulated by the policy

as countermeasures. 4) Evaluate the applicable adaptive threat policy. For a threat

assessment policy, the evaluation result is the posed threat level. If the threat has

a fixed threat level, or the mitigation policy already returns the threat level after

applying countermeasures, the manager skips this step. 5) Calculate the new security

level of the environment(location or group) using Equation (6.2) and Equation (6.3).

Then, the manager adds the threat to the RDF graph and re-evaluates all active

services running in the environment by applying the same steps used in the analyzing

phase for requests to enable them. All active services that fail to satisfy its security

policy or the secure access equation will be suspended to avoid information disclosure

and ensure security. If a device reports that a threat with a specific UUID is no longer

active or has been resolved, the manager will remove the threat, update the security

level, and re-evaluate all suspended services in the environment following the same

steps. If the security level has improved due to the removed threat, the suspended

threats may be resumed.

⎧⎨⎩ Trust Level ≥ Security Level

Security Level ≥ Required Security Level− CL Tuning Param
(6.1)
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(b)

Figure 6.9: (a) The process of handling a user request event. (b) The process of
handling an active/resolved threat.

where

CL Tuning Param =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if Classification Level is Classified

2, if Classification Level is Normal

4, if Classification Level is Public

New Security Level = Current Security Level−max(Threat level of active threats)

(6.2)

besides, while calculating the new security level, the manager also follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Four TL− 1 threats in different classes are equivalent to one TL− 2 threat

Three TL− 2 threats in different classes are equivalent to one TL− 3 threat

Two TL− 3 threats in different classes are equivalent to one TL− 4 threat

New Security Level = 0, if Current Security Level

−max(Threat level of active threats) < 0

(6.3)

Plan Phase : During the plan phase, the manager plans appropriate actions to

be executed for maintaining security in the execute phase, depending on the results

of the analyze phase, and minimizes manual work. As shown in Figure 6.9, after

analyzing the request and the situation, the manager needs to change the status
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of the service and update the SSSO RDF graph if the user’s request is accepted.

Therefore, the manager needs to retrieve relevant triples, including the status of the

requested service, communication endpoint, protocol, and request model from the

SSSO RDF graph, and prepare commands to enable the service through the request

and update the graph for the execute phase. In the event of handling a new threat,

if the security level has degraded, the manager has to re-evaluate the security policy

for each active service in the current environment. In case there are any services with

an unmet condition, the manager plans to suspend these services that may indeed

pose security risks. The manager has to evaluate relevant SPARQL quires to retrieve

relevant triples from the graph and prepare commands to suspend services. Similarly,

such plan phase procedures are also applicable to a threat removal event. In that case,

the threat will be removed, and the manager plans to resume previously suspended

service automatically if the security level has improved.

To further reduce manual work, the manager will reason about the root cause of

the failed attempt to enable service and try to resolve it, in case that it rejects a user’s

request due to any violated security policies or the unsatisfied secure access equation

in the analyze phase. Suppose the trust level of the requester is under the threshold.

In that case, the manager will calculate the additional trust level the user needs,

obtain the context, find available authentication services in the environment which

can provide such an amount of trust level through SPARQL queries, and prompt

the user for performing authentication using a particular authentication service on a

specific device. If there are multiple choices, the manager will randomly choose one of

them. For the sake of safety, relying on a single authentication method is not recom-

mended. Hence, the introduction of randomness could also reduce the likelihood of

system breaching. During this process, the engine will also ignore the authentication

services that have been used by this user to avoid duplicated authentication methods

and ensure security. On the other hand, suppose the failed attempt is due to the

insufficient security level of the space. The engine will try to execute any applica-
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ble countermeasures defined by threat mitigation policies to mitigate threats. If not

applicable, the manager will suggest the user disable the device that incurs threats.

The security level of the space may improve, and consequently, the request may be

accepted.

Execute Phase : During the execute phase, the manager executes commands

prepared in the plan phase. For the system with the microservice architecture, the

execute phase can be simplified. We implement a communication middleware in the

manager so that it can send requests to controlled services and executes the planned

actions following the communication protocol, endpoint address, and request payload

obtained in the plan phase. Besides, the manager executes SPARQL queries and

updates the SSSO RDF graph.

Knowledge Base : The whole RDF graph based on SSSO acts as the knowledge

base of the autonomic security manager. The RDF graph can be queried and updated

using SPARQL through the triple store API, representing retrieving information and

updating the knowledge base.

6.5 Implementation and Evaluation

We use Python 3.8.2 to implement the autonomic security manager and the interface

layer. For the triple store layer, we leverage Apache Jena with the Fuseki component.

All three implemented layers are containerized using Docker and can be deployed as

services in the microservice-based smart space. The containerized autonomic security

manager can be scaled horizontally and vertically to meet the demands of large-scale

deployments and serve a large volume of requests. As the evaluation, based on a

current BlackBerry customer problem, we model a smart conference room with 32

devices, 66 services, 30 potential threats, and 28 adaptive policies using SSSO, and

deploy the implemented autonomic security manager. The partial overview of the

modeled space is shown in Figure 6.10 (a).

Based on BlackBerry and the customer’s input, we design a series of 160 events,
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Policy IRI Policy Class
SL-4 Security_Level

SL-3 Security_Level

SL-2 Security_Level

SL-1 Security_Level
acp1 Access_Policy
acp2 Access_Policy
trust1 Trust_Assessment_Policy

sap1 Security_Assessment_Policy

sap2 Security_Assessment_Policy

TL-4 Threat_Level

Classified Classification Level

threat1 Threat_Assessment_Policy

threat2 Threat_Assessment_Policy

threatmgt1 Threat_Mitigation_Policy

Device IRI Equipment Class
cam1 Network_Camera, AV

cam2 Network_Camera, AV

board1 Smart_Board, AV

speaker1 Smart_Speaker, AV
thermo1 Thermostat_HVAC
afvalv1 Airflow_Valve, HVAC
lock1 Smart_Door_Lock, Lock

lock2 RFID_Door_Lock, Lock

router1 Router, Network

server1 File_Server, Network

vgtw1 VoIP_Gateway, Network

vphone1 VoIP_Phone, Telecommunication

tablet1 Tablet, Telecommunication

swp1 Smart_Sweeper, SmartHome

Service IRI Service Class
capvid1 Capture_Video, Data

capvid2 Capture_Video, Data

capvid3 Capture_Video, Data

recvoc1 Record_Audio, Data
recvoc2 Record_Audio, Data

tem1 Measure_Temperature, Sense
airflw1 Airflow_Setpoint_Control, Control

opdoor1 Open_Door, Control

passwd1 Password_Authentication, Auth.

opdoor2 Open_Door, Control

nfcauth1 NFC_Authentication, Auth.

encrpt1 Encryption_in_Transit, Data

encrpt2 Encryption_at_Rest, Data

swp1 Turn_on, Control

Context IRI Context Class
BLD4-F16-8 Location

HVAC_Manager Group

Security_Camera Group

Active Status
Suspended Status

edp1 RPC, Communication_Endpoint
edp2 MQTT, Communication_Endpoint

reqmdl1 Request_Model, Model

threatmdl1 Threat_Model, Model

User IRI hasName
95dfaede-3e51-4d6d-b48c-1b02142e293b Alice B.

bbd045e0-8a8a-4f9a-b2e7-65c0d017db32 Bob C.

Equipment Service Policy

Context

User

Event ID Event Description Event Type Response

1 Register a new device "Smart Board". Register Device 1 device, 9 services, 11 endpoints, 1 equipment model... added

2 Register a new device "Smart Speaker". Register Device 1 device, 3 services, 3 endpoints, 1 equipment model... added

3 System administrator initializes a conference room and modifes the classification level of the room BLD4-F16-8 as "Classified". Modify Policy BLD4-F16-8 hasPolicy Classified, BLD4-F16-8 hasPolicy SL-4

4 Alice authenticates through the password authentication service porvided by the smart door lock. User Request Alice hasPolicy SL-2. Alice has the trust level of SL-2.

5 Alice requests to enable the capture video service provided by the smart board. User Request Request rejected as the trust level is insufficient. Prompt for Face
Auth on Smart Board.

6 Alice authenticates through the face authentication service provided by the smart board. User Request Alice hasPolicy SL-4. Alice has the trust level of SL-4.
7 Alice requests to enable the capture video service provided by the smart board. User Request Request accepted. Enable the capture video service capvid1. 

7 The network camera in  BLD4-F16-8 reports the unexpected occupancy threat. New Threat BLD4-F16-8 hasPolicy SL-0. The security level degrades to SL-0.
capvid1 service is suspended.

... ... ... ...

(a)

(b)

Figure 6.10: (a) The partial overview of the modeled security-enhanced smart con-
ference room. (b) The partial description of the series of 160 events.

as shown in Figure 6.10 (b). The full information, including individuals, proper-

ties, policy definitions, descriptions, and event responses, is available on our artifact

page. The series of events cover various event types. We validate the autonomic

security management through such an event series. The autonomic security manager

can adaptively respond to the events and maintain the security of the smart space

through the MAPE-k method proposed in Section 6.4.4. The responses of the man-

ager are partially presented in Figure 6.10 (b). We also evaluate the performance of

the proposed solution for managing security on a large-scale deployment with 20,000

devices, 180,000 services, 260,002 contextual entities, and in total, 1,860,701 triples.

We deploy the system on a laptop with a 2.50GHz Intel Core i5-2520M processor

and 8 GB of memory without scaling any layer. Without considering the communi-

cation delay for sending requests to the endpoint, the autonomic security manager

can respond to new device registration, request handling, and threat handling within

two seconds on average. This shows the applicability of the proposed system for a

large-scale smart space. The manager is applicable to other smart space scenarios

with different granularity levels, such as a smart home and smart buildings.
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6.6 Summary

In this chapter, we addressed Object 4 by proposing the Secure Smart Space Ontology

and autonomic security manager. The ontology is service-oriented, security-enhanced,

event-driven, and context-rich. It is extendable and adheres to the principles of the

IoT system with microservice architecture. Based on SSSO, we proposed an auto-

nomic security manager with the MAPE-k method, which could autonomically man-

age the security while minimizing manual work. We evaluated the proposed solution

through a case study on a current BlackBerry customer problem and assessed the per-

formance of the system under a large-scale deployment with over 1.8 million triples.

The manager could adaptively respond to all events and autonomically manage the

security of the space.
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Chapter 7

Discussion, Future Work, and
Conclusion

7.1 Discussion

As serverless computing and microservices have become some of the most popular use

cases and examples of distributed systems, optimal function container placement has

become an urgent problem. While container orchestration solutions usually provide

various scheduling policies, most of them leverage simple strategies that treat the

serverless function as a black box, inevitably resulting in performance degradation. To

solve this issue, we propose an ANN-based adaptive function placement algorithm in

Chapter 3 that takes both serverless functions and VMs into consideration. Our work

could shed some light on optimal function placement for FaaS platforms. In this way,

we point out a promising direction to optimize microservice-based distributed systems.

Our results show that the throughput of functions could be improved with negligible

overhead by considering the workload characteristics of serverless functions when

scheduling function containers. While the proposed function placement algorithm

outperforms other strategies according to the evaluation results, it also has some

limitations: 1) In our setting, all VM configurations are identical. 2) The overhead is

tested on relatively small scales. 3) The model for predicting normalized throughput

does not evolve over time.

With the new development, deployment, management, testing, and billing models
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introduced by FaaS, applications based on serverless microservices have emerged as a

new type of cloud-based and event-driven distributed systems. While FaaS providers

take over most operational responsibilities, the unpredictability of performance and

cost and trade-offs between them have become significant concerns. In Chapter 4,

we propose, to the best of our knowledge, the first analytical models to accurately

get the average end-to-end response time and cost of serverless applications with four

types of structures in their workflows. In Chapter 5, we present a heuristic algorithm

for optimizing the performance and cost of serverless applications, which can help

developers solve trade-offs between performance and cost. Both the proposed models

and optimization algorithms are evaluated through real experiments on AWS, which

involves multiple serverless applications with complex structures.

While the proposed models have a high time complexity, we validate the applicabil-

ity of the models for now and the foreseeable future by an empirical study and analysis

under the worst-case scenario. The proposed models and optimization algorithms can

be updated by new monitoring data depending on the degree of uncertainty in the

underlying FaaS infrastructure and the serverless application itself. However, if the

initial performance profiling phase has been done properly, the performance and cost

models and optimal configurations should remain valid for a long time. Other reasons

for updating the model will be changing the function configurations, the application

architecture, function source code, or optimization constraints. From a practical point

of view, these parameters are not expected to change frequently. If any of the param-

eters mentioned above, except function source code, changes, users only need to rerun

performance and cost models and optimization algorithms, which can be completed

easily in a short time. If the function source code changes, updating the performance

profile is required for the modified function, which is comparatively time-consuming

and perhaps costly. Based on current input, the proposed models can only predict the

average response time and cost, which may be less important than the 95th percentile

in some cases. However, to model the 95th percentile, we need the exact distribution
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of the input size and the response time of each function. It is beyond the scope of

the study presented in this thesis to model percentiles and deviations.

In Chapter 6, we aim at solving the security issue of distributed systems, specifi-

cally microservice-based IoT systems. We propose SSSO with four features to describe

and abstract smart spaces equipped with microservice-based IoT devices. Then, we

use SSSO as the knowledge base in the MAPE-k loop engine to achieve autonomic

security management in IoT smart spaces. We present a case study on a smart con-

ference room with 32 devices and 66 services and evaluate the proposed manager

using a series of 160 events. However, several limitations have been identified: (1)

We use Python to simulate behaviors of IoT devices, and we do not use the actual

equipment to implement such an autonomic security management system. Since the

microservice-based IoT devices can be treated as a piece of software, we do not expect

any major impact on our results. (2) We only use a series of events to evaluate our

security solution and do not evaluate the ontology in regular IoT systems. Leveraging

IoT security testbeds is an effective method for solution evaluations [134]. However,

there is no available IoT testbed suitable for microservice architecture systems at the

moment. (3) We design a default security assessment policy and a default threat as-

sessment policy based on the relationships among services, devices, and critical data.

Such default policies may not be the best practices in some scenarios in which the

underlying system architecture, space granularity, or on-premise security guidelines

differ considerably. In such a case, an on-site security professional may be advised to

optimize default security and threat assessment policies.

7.2 Future Work

The studies of this thesis suggest several avenues for future research.

1. It is valuable to study the adaptive function placement algorithm for large-scale

heterogeneous clouds composed of different flavors of VMs and PMs. Efficient
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and scalable online machine learning techniques could be leveraged to update

the function performance prediction model for enhanced predictive accuracy.

2. It is practically and industrially important to investigate the integration of the

adaptive function placement algorithm into the Kubernetes control plane as a

pluggable scheduler.

3. The performance and cost models and optimization algorithms with better ef-

ficiency and time complexity may be explored in a future study.

4. Besides average response time and cost, it is significant to model other perfor-

mance SLAs that involve percentiles, such as the 95th percentile of response

time and cost.

5. It is helpful to automate the process of profiling serverless functions, extracting

the workflow of serverless applications, and predicting the performance and cost.

A toolchain consisting of such functionalities would be valuable to serverless

application developers.

6. It is useful to implement and analyze the proposed autonomic security manager

in more real-world scenarios and develop an IoT testbed suitable for microservice

architecture systems.

7.3 Conclusion

In this thesis, we addressed four research objectives by presenting the solution to

optimize microservice-based distributed systems from three aspects. More specifi-

cally, we focused on improving SLA adherence of FaaS platforms, performance and

cost modeling and optimization for applications based on serverless microservices,

and autonomic security management for smart spaces based on IoT systems with

microservice architecture.
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In Chapter 3, we improved SLA compliance by proposing and solving the function

placement problem. We proposed an ANN-based placement algorithm, which could

select the VM from the VM pool leading to the best predictive performance to place

the function container by considering the workload profile of functions and perfor-

mance metrics of VMs. We conducted extensive experiments to evaluate the imple-

mented function placement algorithm and compare it with three common placement

strategies. Our evaluation results showed that the proposed placement algorithm

could improve the throughput of serverless functions without incurring significant

overhead.

In Chapter 4 and Chapter 5, we addressed the problem of modeling and optimiza-

tion of performance and cost for serverless applications. In Chapter 4, we first laid

out a formal definition of the serverless workflow considering several serverless fea-

tures on clouds. Then we solved the unpredictable performance and cost problems by

proposing the performance and cost models. The proposed models could accurately

estimate the average end-to-end response time and cost of serverless applications. We

checked the validity of the proposed models by extensive evaluation of five serverless

applications deployed on AWS. In Chapter 5, we formulated two optimization prob-

lems, namely the best performance under the budget constraint and the best cost

under the performance constraint. We answered them by proposing a heuristic al-

gorithm with four greedy strategies. Again, we verified the validity of the proposed

algorithm through experimental evaluations on AWS.

In Chapter 6, we achieved autonomic security management for smart spaces equipped

with microservice-based IoT devices. We first proposed the Secure Smart Space On-

tology for describing resources and context in security-enhanced smart spaces, which

is service-oriented, security-enhanced, event-driven, and context-rich. Such a formal

description of the IoT environments facilitates analysis and reasoning about the cur-

rent state of the space in a machine-understandable fashion. We used SSSO as the

knowledge base in the MAPE-k loop engine to achieve autonomic security manage-
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ment in IoT smart spaces. We implemented an autonomic security manager that

has four layers with scalability. The autonomic manager could monitor and analyze

events and context, and plan and execute adaptive countermeasures with minimum

human intervention at a large scale. Based on the current BlackBerry customer prob-

lem, we modeled a smart conference room and evaluated our work through a series

of events. The performance of the proposed solution was also assessed through a

large-scale deployment.
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[95] L. Liu and M. T. Özsu, Encyclopedia of database systems. Springer New York,
NY, USA: 2009, vol. 6.

[96] O. Lassila and R. R. Swick, “Resource description framework (rdf) model and
syntax specification,” 1999.

[97] M. Tao, J. Zuo, Z. Liu, A. Castiglione, and F. Palmieri, “Multi-layer cloud
architectural model and ontology-based security service framework for iot-
based smart homes,” Future Generation Computer Systems, vol. 78, pp. 1040–
1051, 2018.

[98] S. D. Nagowah, H. B. Sta, and B. Gobin-Rahimbux, “An overview of semantic
interoperability ontologies and frameworks for iot,” in 2018 Sixth International
Conference on Enterprise Systems (ES), IEEE, 2018, pp. 82–89.

[99] F. Latfi, B. Lefebvre, and C. Descheneaux, “Ontology-based management of
the telehealth smart home, dedicated to elderly in loss of cognitive autonomy.,”
in OWLED, vol. 258, 2007.

[100] L. Chen and C. Nugent, “Ontology-based activity recognition in intelligent
pervasive environments,” International Journal of Web Information Systems,
vol. 5, no. 4, pp. 410–430, 2009.

[101] A. Evesti, R. Savola, E. Ovaska, and J. Kuusijärvi, “The design, instantia-
tion, and usage of information security measuring ontology,” in The Second
International Conference on Models and Ontology-based Design of Protocols,
Architectures and Services, 2011, pp. 1–9.

[102] A. Evesti, J. Suomalainen, and E. Ovaska, “Architecture and knowledge-driven
self-adaptive security in smart space,” Computers, vol. 2, no. 1, 2013.

129



[103] S. Borgo, A. Cesta, A. Orlandini, and A. Umbrico, “An ontology-based domain
representation for plan-based controllers in a reconfigurable manufacturing
system,” in The Twenty-Eighth International Flairs Conference, 2015.

[104] N. Seydoux, K. Drira, N. Hernandez, and T. Monteil, “Autonomy through
knowledge: How iot-o supports the management of a connected apartment,”
in Semantic Web Technologies for the Internet of Things (SWIT), CEUR-WS,
2016.

[105] Y. I. Khan and M. U. Ndubuaku, “Ontology-based automation of security
guidelines for smart homes,” in 2018 IEEE 4th World Forum on Internet of
Things (WF-IoT), IEEE, 2018, pp. 35–40.

[106] D. G. Korzun, S. I. Balandin, and A. V. Gurtov, “Deployment of smart spaces
in internet of things: Overview of the design challenges,” in Internet of Things,
Smart Spaces, and Next Generation Networking, Springer, 2013, pp. 48–59.

[107] S. Balandin and H.Waris, “Key properties in the development of smart spaces,”
in International conference on universal access in human-computer interaction,
Springer, 2009, pp. 3–12.

[108] D. Korzun, I. Galov, and S. Balandin, “Development of smart room services
on top of smart-m3,” in Open Innovation Association, IEEE, 2013.

[109] V. Catania and D. Ventura, “An approch for monitoring and smart planning
of urban solid waste management using smart-m3 platform,” in Proceedings of
15th conference of open innovations association FRUCT, IEEE, 2014, pp. 24–
31.

[110] D. G. Korzun, A. V. Borodin, I. V. Paramonov, A. M. Vasilyev, and S. I. Ba-
landin, “Smart spaces enabled mobile healthcare services in internet of things
environments,” International Journal of Embedded and Real-Time Communi-
cation Systems (IJERTCS), vol. 6, no. 1, pp. 1–27, 2015.

[111] H. Moeini, I.-L. Yen, and F. Bastani, “Routing in iot network for dynamic
service discovery,” in 2017 IEEE 23rd International Conference on Parallel
and Distributed Systems (ICPADS), IEEE, 2017, pp. 360–367.

[112] H. Moeini, W. Zeng, I.-L. Yen, and F. Bastani, “Toward data discovery in dy-
namic smart city applications,” in 2019 IEEE 21st International Conference
on High Performance Computing and Communications; IEEE 17th Interna-
tional Conference on Smart City; IEEE 5th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), IEEE, 2019, pp. 2572–2579.

[113] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Server-
less computing: An investigation of factors influencing microservice perfor-
mance,” Proceedings - 2018 IEEE International Conference on Cloud Engi-
neering, IC2E 2018, pp. 159–169, 2018.

130



[114] W. Lloyd, S. Pallickara, O. David, J. Lyon, M. Arabi, and K. Rojas, “Perfor-
mance modeling to support multi-tier application deployment to infrastructure-
as-a-service clouds,” in 2012 IEEE Fifth International Conference on Utility
and Cloud Computing, IEEE, 2012, pp. 73–80.

[115] Cybera – a connected future for all albertans, https://www.cybera.ca/, [Online;
accessed March-16-2021], 2021.

[116] Docker hub, https://hub.docker.com/, [Online; accessed March-16-2021], 2021.

[117] A. Kopytov, “Sysbench manual,” MySQL AB, pp. 2–3, 2012.

[118] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux, “Oltp-bench: An
extensible testbed for benchmarking relational databases,” Proceedings of the
VLDB Endowment, vol. 7, no. 4, pp. 277–288, 2013.

[119] Best practices for working with aws lambda functions, https : / / docs . aws .
amazon.com/lambda/latest/dg/best-practices.html, [Online; accessed March-
12-2021], 2021.

[120] A. Kumar and S. Mahendrakar, Serverless Integration Design Patterns with
Azure: Build powerful cloud solutions that sustain next-generation products.
Packt Publishing, 2019, isbn: 9781788390835. [Online]. Available: https ://
books.google.ca/books?id=KB2IDwAAQBAJ.

[121] Aws samples, https://github.com/aws-samples/, [Online; accessed March-1-
2021], 2021.

[122] Azure samples, https://github.com/Azure-Samples, [Online; accessed March-
1-2021], 2021.

[123] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. Von Kistowski, A.
Ali-eldin, C. Abad, J. N. Amaral, P. Tůma, and A. Iosup, “Methodological
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