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Abstract: Microservice architecture is the mainstream pattern for developing large-scale cloud applications as it allows
for scaling application components on demand and independently. By designing and utilizing autoscalers for
microservice applications, it is possible to improve their availability and reduce the cost when the traffic load
is low. In this paper, we propose a novel predictive autoscaling approach for microservice applications which
leverages machine learning models to predict the number of required replicas for each microservice and the
effect of scaling a microservice on other microservices under a given workload. Our experimental results show
that the proposed approach in this work offers better performance in terms of response time and throughput
than HPA, the state-of-the-art autoscaler in the industry, and it takes fewer actions to maintain a desirable
performance and quality of service level for the target application.

1 INTRODUCTION

Microservice is the most promising architecture for
developing modern large-scale cloud software sys-
tems (Dragoni et al., 2017). It has emerged through
the common patterns adopted by big tech companies
to address similar problems, such as scalability and
changeability, and to meet business objectives such as
reducing time to market and introducing new features
and products at a faster pace (Nadareishvili et al.,
2016). Traditional software architectures, such as
monolithic architecture, are not capable of accommo-
dating these needs efficiently (Dragoni et al., 2017).
Companies like SoundCloud, LinkedIn, Netflix, and
Spotify have adopted the microservice architecture in
their organization in recent years and reported success
stories of using it to meet their non-functional require-
ments (Calçado, 2014; Ihde and Parikh, 2015; Mauro,
2015; Nadareishvili et al., 2016).

In the microservice paradigm, the application
is divided into a set of small and loosely-coupled
services that communicate with each other through
a message-based protocol. Microservices are au-
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tonomous components which can be deployed and
scaled independently.

One of the key features of the microservice archi-
tecture is autoscaling. It enables the application to
handle an unexpected demand growth and continue
working under pressure by increasing the system ca-
pacity. While different approaches have been pro-
posed in the literature for autoscaling of cloud ap-
plications (Kubernetes, 2020; Fernandez et al., 2014;
Kwan et al., 2019; Lorido-Botran et al., 2014; Qu
et al., 2018), most related work is not tailored for the
microservice architecture (Qu et al., 2018). This is be-
cause a holistic view of the microservice application
is not incorporated in most related work; hence each
service in the application is scaled separately with-
out considering the impact this scaling could have on
other services. To remedy the shortcoming of existing
solutions, a more effective and intelligent autoscaler
can be designed for microservice applications, a di-
rection we pursue in this paper.

We introduce Waterfall autoscaling (hereafter re-
ferred to as Waterfall for short), a novel approach
to autoscaling microservice applications. Waterfall
takes advantage of machine learning techniques to
model the behaviour of each microservice under dif-
ferent load intensities and the effect of services on
one another. Specifically, it predicts the number of re-
quired replicas for each service to handle a given load



and the potential impact of scaling a service on other
services. This way, Waterfall avoids shifting load or
possible bottlenecks to other services and takes fewer
actions to maintain the application performance and
quality of service metrics at a satisfactory level. The
main contributions of our work are as follows:

• We introduce data-driven performance models for
describing the behaviour of microservices and
their mutual impacts in microservice applications.

• Using these models, we design Waterfall which is
a novel autoscaler for microservice applications.

• We evaluate the efficacy of the proposed au-
toscaling approach using Teastore, a reference
microservice application, and compare it with a
state-of-the-art autoscaler used in the industry.

The rest of this paper is organized as follows.
Section 2 reviews related work on autoscaling and
Section 3 provides a motivating scenario. Section 4
presents the proposed machine learning-based perfor-
mance models for microservice applications. Sec-
tion 5 describes the design of Waterfall autoscaler.
Section 6 evaluates the proposed autoscaling tech-
nique, and Section 7 concludes the paper.

2 RELATED WORK

Autoscaling is a widely used and well-known con-
cept in cloud computing, mainly due to the elas-
ticity and pay-as-you-go cost model of cloud ser-
vices. With the shift in the runtime environment of
microservice applications from bare-metal servers to
more fine-grained environments, such as virtual ma-
chines and containers in the cloud, autoscaling has
become an indispensable part of microservice appli-
cations. The autoscalers can be categorized based
on different aspects from the underlying technique to
the decision making paradigm (e.g., proactive or re-
active) and the scaling method (e.g., horizontal, ver-
tical, or hybrid) (Qu et al., 2018). Based on the un-
derlying technique, autoscalers can be classified into
five categories: rule-based methods, application pro-
filing methods, analytical modelling methods, search-
based optimization methods, and machine learning-
based methods.

Rule-based autoscalers act based on a set of pre-
defined rules to scale and estimate the amount of
necessary resources for provisioning. This type of
autoscalers is common in the industry and usually
serves as the baseline (Qu et al., 2018). Products
such as Amazon AWS Autoscaling service (Amazon,
2020b) and Kubernetes Horizontal Pod Autoscaler
(HPA) (Kubernetes, 2020) fall into this group. Wong

et al. (Kwan et al., 2019) proposed two rule-based
autoscalers similar to Kubernetes HPA for microser-
vices, namely HyScaleCPU and HyScaleCPU+Mem.
HyScaleCPU uses both horizontal and vertical scaling
to scale each microservice in the target application
separately based on CPU utilization. It gives prior-
ity to vertical scaling and applies horizontal scaling
only if the required amount of resources cannot be
acquired using vertical scaling. HyScaleCPU+Mem op-
erates similarly except that it considers memory uti-
lization in addition to CPU utilization for making the
scaling decision. Although rule-based autoscalers are
easy to implement, they typically need expert knowl-
edge about the underlying application for tuning the
thresholds and defining the scaling policies (Qu et al.,
2018).

Application profiling methods measure the appli-
cation capacity with a variety of configurations and
workloads and use this knowledge to determine the
suitable scaling plan for a given workload and con-
figuration. For instance, Fernandez et al. (Fernandez
et al., 2014) proposed a cost-effective autoscaling ap-
proach for single-tier web applications using hetero-
geneous Spot instances (Amazon, 2020a). They used
application profiling to measure the processing capac-
ity of the target application on different types of Spot
instances for generating economical scaling policies
with a combination of on-demand and Spot instances.

In autoscalers with analytical modelling, a mathe-
matical model of the system is used for resource esti-
mation. Queuing models are the most common ana-
lytical models used for performance modelling of ap-
plications in the cloud. In applications with more than
one component, such as microservice applications, a
network of queues is usually considered to model the
system. Gias et al. (Gias et al., 2019) proposed a hy-
brid (horizontal+vertical) autoscaler for microservice
applications based on a layered queueing network
model (LQN) named ATOM. ATOM uses a genetic
algorithm in a time-bounded search to find the opti-
mal scaling strategy. The downside of modelling mi-
croservice applications with queuing network models
is that finding the optimal solution for scaling is com-
putationally expensive. Moreover, in queueing mod-
els, measuring the parameters such as service time
and request mix is non-trivial and demands a complex
monitoring system (Qu et al., 2018).

Search-based optimization methods use a meta-
heuristic algorithm to search the state space of system
configuration for finding the optimal scaling decision.
Chen et al. (Chen and Bahsoon, 2015) leveraged a
multi-objective ant colony optimization algorithm to
optimize the scaling decision for a single-tier cloud
application with respect to multiple objectives.



Machine learning-based autoscalers leverage ma-
chine learning models to predict the application per-
formance and estimate the required resources for dif-
ferent workloads. Machine learning techniques can
be divided into regression and reinforcement learning
methods. Regression-based methods usually find the
relationship between a set of input variables and an
output variable such as resource demand or a perfor-
mance metric. Wajahat et al. (Wajahat et al., 2019)
proposed a regression-based autoscaler for autoscal-
ing of single-tier applications. They considered a set
of monitored metrics to predict the response time of
the application, and based on predictions, they in-
creased or decreased the number of virtual machines
assigned to the application on OpenStack. Jindal et
al. (Jindal et al., 2019) used a regression model to es-
timate the microservice capacity (MSC) for each ser-
vice in a microservice application. MSC is the max-
imum number of requests that a microservice with a
certain number of replicas can serve per second with-
out violating the service level objective (SLO). They
obtained this value by sandboxing and stress-testing
each service for several configuration deployments
and then fitting a regression model to the collected
data. In reinforcement learning approaches, an agent
tries to find the optimal scaling policy for each state
of the system (without assuming prior knowledge)
through interaction with the system. Iqbal et al. (Iqbal
et al., 2015) leveraged reinforcement learning to learn
autoscaling policies for a multi-tier web application
under different workloads. They identified the work-
load pattern from access logs and learned the appro-
priate resource allocation policy for a specific work-
load pattern so that SLO is satisfied and resource uti-
lization is minimized. The drawback of reinforce-
ment learning methods is the poor performance of au-
toscalers at the early stages of deployment because it
takes some time for the reinforcement learning model
to learn the optimal policy. Moreover, machine learn-
ing has been used for workload prediction in proactive
autoscaling. These methods use time series forecast-
ing models to predict the future workload and provi-
sion the resources ahead of time based on the predic-
tion for the future workload. Coulson et al. (Coulson
et al., 2020) used a stacked LSTM (Hochreiter and
Schmidhuber, 1997) model to predict the composition
of the next requests and scale each service in the ap-
plication accordingly. Abdullah et al (Abdullah et al.,
2020) introduced a proactive autoscaling method for
microservices in fog computing micro data centers.
They predict the incoming workload with a regression
model using different window sizes and identify the
number of containers required for each microservice
separately. The main problem with these methods is
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Figure 1: Interaction of services in an example microservice
application.

that they can lead to dramatic overprovisioning or un-
derprovisioning of resources (Qu et al., 2018) owing
to the uncertainty of workload arrivals, especially in
the news feed and social network applications.

3 MOTIVATING SCENARIO

A microservice application usually consists of multi-
ple services interacting with each other to accomplish
their job. The rate at which a service sends requests to
the downstream services depends on the rate at which
it receives requests and the amount of resources avail-
able for processing these requests. Thus, scaling a ser-
vice that may invoke a group of other services might
subsequently change the load on those services. Con-
sider the interaction between three services in an ex-
ample microservice application depicted in Figure 1.
Service 1 calls Service 2 and Service 3 to complete
some tasks. If Service 1 is under heavy load (R1),
scaling Service 1 would cause an increase in the load
observed by Service 2 (R2) and Service 3 (R3). If
we predict how scaling Service 1 degrades the per-
formance of Service 2 and Service 3, we can avoid
the shift in the load and a possible bottleneck from
Service 1 to Service 2 and Service 3 by scaling Ser-
vice 2 and Service 3 proactively at the same time as
Service 1.

To further examine the cascading effect of scal-
ing a service in a microservice application on other
services, we conducted an experiment using an ex-
ample microservice application called Teastore (von
Kistowski et al., 2018). Teastore1 is an emulated on-
line store for tea and tea-related products. It is a
reference microservice application developed by the
performance engineering community to provide re-
searchers with a standard microservice application
that can be used for testing and evaluating research in
different areas such as performance modelling, cloud
resource management, and energy efficiency analy-
sis (von Kistowski et al., 2018). Figure 2 shows ser-
vices in the Teastore application and the relationships
between them. The solid lines show the dependencies
between services, and dashed lines indicate that the

1https://github.com/DescartesResearch/TeaStore
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Figure 2: Architecture of the Teastore application.

service call happens only once at startup time. Tea-
store includes five primary services: Webui, Auth,
Persistence, Recommender, and Image. Webui is the
front-end service that users interact with and is re-
sponsible for rendering the user interface. Auth stands
for authentication; it verifies the user’s credentials and
session data. The Persistence service interacts with
the database and performs create, read, update, and
delete (CRUD) operations. The Recommender ser-
vice predicts the user preference for different products
and recommends appropriate products to users using
a collaborative filtering algorithm. The Image service
provides an image of products in different sizes. In
addition to main services, Teastore has another com-
ponent named Registry, which is responsible for ser-
vice registration and discovery.

As can be seen in Figure 2, depending on the
request type, the Webui service may invoke Image,
Persistence, Auth, and Recommender services. We
generate a workload comprising different types of re-
quests so that Webui service calls all of these four ser-
vices. Keeping the same workload intensity, we in-
creased the number of replicas for the Webui service
from 1 to 5 and monitored the request rate of Webui
in addition to the downstream rate of the Webui ser-
vice to other services that each has one replica. For
the two services m and n, we define the request rate
of service m, denoted by RR(m), as the number of re-
quests it receives per second, and the downstream rate
of service m to service n, denoted by DR(m,n), as the
number of requests service m sends to service n per
second.

For instance, in Figure 1, RR(Service 1) is equal
to R1 and DR(Service 1, Service 2) is equal to R2.

Figure 3 shows the results of our experiment. The
left plot and right plot show the request rate and to-
tal downstream rate of the Webui service for different
number of replicas, respectively. Error bars indicate
the 95% confidence interval. Table 1 shows the re-
quest rate of Webui and its downstream rate to each
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Figure 3: Request rate and total downstream rate of We-
bui under the same load intensity for different numbers of
replicas.

Table 1: Request Rate (RR) and Downstream Rate (DR) of
the Webui service to each service.

Monitored Metric 1 2 3 4 5
RR(Webui) 480 936 1334 1438 1445

DR(Webui,Persistence) 1083 2108 3005 3239 3253
DR(Webui,Auth) 482 938 1337 1441 1447
DR(Webui,Image) 562 1094 1559 1680 1688

DR(Webui,Recommender) 121 235 334 360 362

service for the different number of replicas. As can
be seen, scaling the Webui service leads to an increase
in its request rate, which in turn increases the down-
stream rate of the Webui service to other services.
Therefore, under heavy load, scaling the Webui ser-
vice increases the load on the other four services.

The cascading effect of microservices on each
other motivates the idea of having an autoscaler that
takes this effect into account and takes action accord-
ingly. Autoscalers that consider and scale different
services in an application independently are unaware
of this relationship, thereby making premature de-
cisions that could lead to extra scaling actions and
degradation in the quality of service of the applica-
tion. In this work, we introduce a novel autoscaler to
address the deficiencies in these autoscalers.

4 PREDICTING PERFORMANCE

This section presents machine learning models
adopted for performance modelling of microservice
applications. These models are at the core of our au-
toscaler for predicting the performance of each ser-
vice and possible variations in performance as a re-
sult of scaling another service. Hence, we utilize two
machine learning models for each microservice which
are described in the following sections.
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Figure 4: Input features and the predicted value of the CPU
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Figure 5: Input features and the predicted value of the re-
quest model.

4.1 Predictive Model for CPU
Utilization

The CPU Model captures the performance behaviour
of each microservice in a microservice application
in terms of CPU utilization. CPU utilization is a
good proxy for estimating the workload of a microser-
vice (Gotin et al., 2018). Therefore, we use the aver-
age CPU utilization of the microservice replicas as the
performance metric for scaling decisions. Depending
on the target performance objective, this metric can
be replaced with other metrics, such as response time
and message queue metrics.

As Figure 4 demonstrates, the CPU Model takes
the number of service replicas and the request rate of
service as input features and predicts the service’s av-
erage CPU utilization. In other words, this model can
tell us what would be the average CPU utilization of
service under a specific load.

4.2 Predictive Model for Request Rate

The Request Model predicts the new request rate of
a microservice after scaling and changing the number
of service replicas. As shown in Figure 5, we feed
the current number of service replicas, the current av-
erage CPU utilization of service, the current request
rate of service, and the new number of service replicas
as input features to the Request Model to predict the
new request rate for the service. The current replica,
current CPU utilization, and current request rate de-
scribe the state of the service before scaling. The new
replica and new request rate reflect the state of the ser-
vice after scaling. We use the output of the Request
Model for a given service to calculate the new down-
stream rate of that service to other services. Thus, the
Request Model helps us predict the effect of scaling a
service on other services.

As we discussed in Section 3, any changes in the
request rate of a service in a microservice applica-
tion might lead to changes in the downstream rate
of that service to other services. However, we ob-

Table 2: The ratio of Downstream Rate (DR) values of We-
bui service to its Request Rate (RR) for different number of
replicas under the same workload intensity.

DR/RR 1 2 3 4 5
DR(Webui,Persistence)/
RR(Webui)

2.25 2.25 2.25 2.25 2.25

DR(Webui,Auth)/
RR(Webui)

1.00 1.00 1.00 1.00 1.00

DR(Webui,Image)/
RR(Webui)

1.17 1.17 1.17 1.17 1.17

DR(Webui,Recommender)/
RR(Webui)

0.25 0.25 0.25 0.25 0.25

served that under the same workload intensity, when
we scale a service, the downstream rate of that service
to another service changes linearly with respect to its
request rate. For instance, we used the results from
Section 3 in Table 1 and divided the downstream rate
of Webui service to other services by its request rate
and got the values in Table 2. Consequently, when we
scale a service, if we have the new request rate after
scaling, we can calculate its new downstream rate to
other services. We achieve this goal through Request
Model. For example, according to Table 1 for one
replica RR(Webui) ≈ 480 and DR(Webui,Persistence)
≈ 1083. Moreover, from Table 2 we know that for all
replica counts, DR(Webui,Persistence) / RR(Webui)≈
2.25. Therefore, if we scale out the Webui service to
two replicas and have the new value for RR(Webui) as
936, we can estimate the new DR(Webui,Persistence)
by multiplying the new RR(Webui) by 2.25 which will
be 936 * 2.25 ≈ 2106. The reason for the differ-
ence between the calculated value (2106) and the real
value (2108) for the new DR(Webui,Persistence) is
that numbers in Table 1 and Table 2 are rounded due
to lack of space.

4.3 Data Collection

To train CPU Model and Request Model for each mi-
croservice, we needed to collect two datasets per mi-
croservice. The data collection for each microservice
is performed independent of other services. We de-
ploy enough number of replicas from other services
to avoid any limitations imposed by other services on
the target service for data collection.

The dataset for CPU Model includes three met-
rics: the number of replicas, the request rate per sec-
ond, and the average CPU utilization of replicas. Each
data point results from applying a workload with a
fixed number of threads for 12 minutes to the front-
end service. At the end of each run, we collect each
metric’s values during this period and use their mean
as the value of the metric for that data point. Note that
we ignored data values for the first and last minute of
each run to exclude the warm-up and cool-down pe-



riods. We consider a different number of replicas for
the target service, and for each number of replicas,
we change the number of threads to increase the num-
ber of requests until we reach the saturation point for
that specific number of replicas. For instance, for one
replica of an example service, we apply the workload
with 1, 2, 3, 4, and 5 threads, resulting in five data
points.

The Request Model dataset contains five metrics:
the current number of replicas, the current request rate
per second, the current average CPU utilization of
replicas, the new number of replicas, and the new re-
quest rate per second. Each data point for this dataset
results from the merging of two runs with the same
number of threads but a different number of replicas.
For example, we merge the result for the run with one
replica and five threads with the result for two repli-
cas and five threads to generate a data point for the
Request Model dataset. More specifically, we get the
current replica, current CPU utilization, and current
request rate from the first run and the new replica and
new request rate from the second run.

Figure 6 shows an example data point for CPU
Model and Request Model datasets. The data point
for Request Model is a combination of two runs that
have n threads with x and x′ replicas, respectively.

4.4 Model Training Results

We trained CPU Model and Request Model for all mi-
croservices in the Teastore application using datasets
created from collected data. Each dataset was split
into training and validation sets. The training sets
and validation sets contain 80% and 20% of data, re-
spectively. We used Linear Regression, Random For-
est, and Support Vector Regressor algorithms for the
training process and compared them in terms of mean
absolute error (MAE), mean squared error (MSE),
root mean squared error (RMSE), and R2 score. Ta-
ble 3 and Table 4 show the results for CPU Model and
Request Model of each microservice, respectively. As
can be seen from the results, Support Vector Regres-
sor and Random Forest provide lower MAE, MSE,
RMSE, and higher R2 score for CPU Model and Re-
quest Model compared to Linear Regression. Cur-
rently, we use offline learning to train machine learn-
ing models, but our approach can be adapted to lever-
age online learning as well.

5 WATERFALL AUTOSCALER

In this section, we present the autoscaler we designed
using the performance models described in Section 4.

We first outline the architecture of Waterfall and dis-
cuss its approach to abstracting the target microser-
vice application. Finally, we elaborate on the algo-
rithm that Waterfall uses to obtain the scaling strategy.

5.1 Architecture and Abstraction

Figure 7 shows the architecture of Waterfall, which
is based on the MAPE-K control loop (Brun et al.,
2009; Kephart et al., 2003; Kephart and Chess, 2003)
with five elements, namely monitor, analysis, plan,
execute, and a shared knowledge base.

Waterfall abstracts the target microservice appli-
cation as a directed graph, which is called microser-
vice graph, hereafter. In the microservice graph, ver-
texes represent services, and edges show the depen-
dencies between services. The direction of an edge
determines which service sends request to the other
one. For instance, consider the following vertex (V )
and edge (E) sets for an example microservice graph:

V = {A,B,C} , E = {(A,B) ,(A,C)} (1)

This microservice graph contains three services and
two edges. A, B, and C are three different services.
The edges (A,B) and (A,C) show that service A calls
services B and C respectively. In addition, we as-
sign the following three weights to each directed edge
(m,n) between two microservices m and n:

• DR(m,n) which is defined in Section 3.

• Request Rate Ratio(m,n) which is defined for
two services m and n as:

Request Rate Ratio(m,n) =
DR(m,n)

RR(n)
(2)

• Downstream Rate Ratio(m,n) which is defined
for two services m and n as:

Downstream Rate Ratio(m,n) =
DR(m,n)
RR(m)

(3)

We calculate these weights for each edge and pop-
ulate the graph using the monitoring data. Figure 8
shows the microservice graph for the Teastore appli-
cation. The microservice graph for small applications
can be derived manually according to service depen-
dencies. There are also tools (Ma et al., 2018) for
extracting the microservice graph automatically.

5.2 Scaling Algorithm

Our proposed algorithm for autoscaling of microser-
vices leverages machine learning models to predict
the number of required replicas for each service and
the impact of scaling a services on the load of other
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Figure 6: The construction of datasets for CPU Model and Request Model. Request Model dataset is built by merging data
points from the CPU Model dataset.

Table 3: The accuracy and R2 score of CPU Model for different services using Linear Regression (LR), Random Forest (RF),
and Support Vector Regressor (SVR).

Service
Linear Regression Random Forest SVR

MAE MSE RMSE Score MAE MSE RMSE Score MAE MSE RMSE Score
Webui 4.97 45.32 6.73 92.21 3.67 18.57 4.31 96.81 1.43 3.07 1.75 99.47

Persistence 4.12 27.55 5.25 94.03 3.26 17.02 4.13 96.31 0.88 1.91 1.38 99.59
Auth 4.40 37.39 6.11 94.82 4.26 34.45 5.87 95.23 1.73 6.45 2.54 99.11

Recommender 2.62 12.42 3.52 92.94 1.39 4.23 2.06 97.60 1.38 5.00 2.23 97.16
Image 3.81 20.12 4.49 96.87 3.61 21.09 4.59 96.72 1.54 3.45 1.86 99.50
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Figure 7: Architecture of Waterfall autoscaler.
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Figure 8: Teastore microservice graph.

services. This way, we provide a more responsive au-
toscaler that takes fewer actions to keep the applica-
tion at the desired performance.

At the end of each monitoring interval, Water-
fall initializes the microservice graph weights using
monitoring data and runs the scaling algorithm to
find the new scaling configuration. The steps in the
Waterfall scaling algorithm are summarized in Algo-
rithm 1. The algorithm takes the microservice graph,
start node, and monitoring data as input and provides
the new scaling configuration as the output. In the be-

ginning, it initializes the New Con f ig with the current
configuration of the system using monitoring data and
starts finding the new configuration.

It traverses the microservice graph using the
Breadth-First Search (BFS) algorithm and starts the
search from the start node. The start node is usually
the front-end service, which is the users’ interaction
point with the application. At each node, the algo-
rithm checks whether the CPU utilization of the ser-
vice is above or below the target threshold.

In case that the CPU utilization is higher than the
threshold, it calls the scaleOut function. This function
increases the service replicas and predicts the new re-
quest rate of the service using Request Model. After
predicting the new request rate, it uses CPU Model to
predict the new CPU utilization with the new number
of replicas and the new request rate. If the new pre-
dicted CPU utilization is below the threshold, it con-
siders the new replica as the new configuration for the
service. Afterwards, it updates the microservice re-
quest rate using the updateReqRate function. As Al-
gorithm 3 indicates, function updateReqRate updates
the DR value on all edges ending to this microservice
based on the Request Rate Ratio value on each edge.

If the CPU utilization is less than the threshold, it
calls the scaleIn function. This function reduces the
number of service replicas and predicts the new re-
quest rate of the service using Request Model. It then
feeds the new request rate and new replica to CPU
Model to predict the new CPU utilization. If the new
CPU utilization is still below the threshold, it consid-
ers the new replica as the new configuration for ser-
vice and updates the microservice request rate using
the updateReqRate function. Otherwise, it keeps the
current replica as the configuration of the service.



Table 4: The accuracy and R2 score of Request Model for different services using Linear Regression (LR), Random Forest
(RF), and Support Vector Regressor (SVR).

Service
Linear Regression Random Forest SVR

MAE MSE RMSE Score MAE MSE RMSE Score MAE MSE RMSE Score
Webui 50.01 3568.55 59.74 97.83 25.67 1596.37 39.95 99.02 32.01 2134.50 46.20 98.70

Persistence 71.21 9708.55 98.53 99.50 34.94 2717.49 52.13 99.86 39.36 3041.56 55.15 99.84
Auth 79.23 11158.89 105.64 96.35 47.34 3857.84 62.11 98.74 39.57 3611.02 60.09 98.82

Recommender 31.22 1258.56 35.48 94.26 24.49 911.24 30.19 95.84 20.27 620.22 24.90 97.17
Image 71.45 8137.23 90.21 98.72 72.48 7328.20 85.60 98.85 42.99 3642.93 60.36 99.43

If the node that is being processed has any chil-
dren, the algorithm goes to the next step which is ap-
plying the effect of change in service replica num-
ber on downstream services by calling the update-
DownstreamRate function. As Algorithm 3 shows,
this function updates the DR value on all edges start-
ing from the current node and ending at child nodes
based on the Downstream Rate Ratio value on each
edge.

After this step, the algorithm continues the BFS
search by the next node and repeats the steps men-
tioned above. After searching the whole graph and
inferring the new configuration for each service, the
search is over and the algorithm returns the new scal-
ing configuration.

As lines 8-11 show, if the request rate of the ser-
vice in the current node has been changed in the graph
in previous steps, the CPU utilization in the monitor-
ing data is not valid anymore, and we should estimate
the new CPU utilization using CPU Model. The ge-
tRequestRate function calculates the request rate of a
node by summing the DR value on all edges ending to
this node.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of Wa-
terfall autoscaler by comparing Waterfall with HPA,
which is the de facto standard for autoscaling in the
industry. First, we elaborate on the details of our ex-
perimental setup. After that, we present and discuss
our experimental results for the comparison of Water-
fall and HPA in terms of different metrics.

6.1 Experimental Setup

6.1.1 Microservice Application Deployment

We created a Kubernetes2 cluster as the container
orchestration system with one master node and
four worker nodes in the Compute Canada Arbutus

2Kubernetes: https://kubernetes.io

Algorithm 1: Autoscaling Algorithm
Input: Microservice Graph G, Start Node S, Monitoring Data M
Output: New Scaling Configuration New Config

1 New Con f ig←− initilize with current config
2 queue←− []

3 queue.append(S)
4 while queue is not empty do
5 service←− queue.pop(0)
6 req rate updated←− False
7 req rate←− getReqRate(G,service)
8 if M[service][′Req Rate′] == req rate then
9 cpu util←−M[service][′CPU Util′]

10 else
11 cpu util←−

CPU Model(service,new con f ig[service],req rate)

12 curr req rate←− req rate
13 curr cpu util←− cpu util
14 curr replica←− new con f ig[service]
15 if cpu util >= T HRESH then
16 (new replica, pred req rate)←−

scaleOut(curr replica,curr cpu util,
curr req rate)

17 updateReqRate(G,service, pred req rate)
18 new con f ig[service]←− new replica
19 req rate updated←− True

20 else if cpu util < T HRESH ∧ curr replica > 1 then
21 (new replica, pred req rate)←−

scaleIn(curr replica,curr cpu util, curr req rate)
22 if new replica 6= curr replica then
23 updateReqRate(G,service, pred req rate)
24 new con f ig[service]←− new replica
25 req rate updated←− True

26 if G[service].hasChild()∧ req rate updated then
27 updateDownstreamRate(G,service, pred req rate)

28 for each v ∈ G[service].ad jacent() do
29 queue.append(v)

Cloud3. Each node is a virtual machine with 16 vCPU
and 60GB of memory running Ubuntu 18.04 as the
operating system. We deployed each microservice
in the Teastore application as a Kubernetes deploy-
ment exposed by a Kubernetes service. The incoming
traffic is distributed in a round-robin fashion between
pods that belong to a deployment. We imposed con-

3Compute Canada Cloud: https://computecanada.ca

https://kubernetes.io
https://computecanada.ca


Algorithm 2: Scale Out and Scale In Func-
tions
1 Function scaleOut(curr replica, curr cpu util, curr req rate):
2 new replica←− curr replica
3 pred cpu util←− curr cpu util
4 while pred cpu util > T HRESH do
5 new replica←− new replica+1
6 pred req rate←−

Request Model(service,curr replica,
curr cpu util,curr req rate, new replica)

7 pred cpu util←−CPU Model(service,new replica,
pred req rate)

8 return (new replica, pred req rate)

9 Function scaleIn(curr replica, curr cpu util, curr req rate):
10 new replica←− curr replica
11 pred cpu util←− curr cpu util
12 while pred cpu util < T HRESH do
13 new replica←− new replica−1
14 pred req rate←−

Request Model(service,curr replica,
curr cpu util,curr req rate, new replica)

15 pred cpu util←−CPU Model(service,new replica,
pred req rate)

16 if pred cpu util < T HRESH then
17 new req rate←− pred req rate

18 return (new replica+1,new req rate)

straints on the amount of resources available to each
pod using the resource request and limit mechanism
in Kubernetes. The resource request is the amount of
resources guaranteed for a pod, and the resource limit
is the maximum amount of resources that a pod can
have in the cluster. We used the same value for both
resource request and limit to decrease the variability
in pods’ performance. Table 5 shows the details of
CPU and memory configuration for each pod. We
configured the startups, readiness, and liveness probes
for each pod to measure the exact number of ready
pods at any time in the system and also have a recov-
ery mechanism in place for unhealthy pods. We used
the Kubernetes API to query or change the number of
pods in a deployment.

6.1.2 Load Generation

We used Jmeter4, an open-source tool for load test-
ing of web applications, to generate an increasing
workload with a length of 25 minutes for the Teast-
ore application. This workload is a common browsing
workload that represents the behaviour of most users
when visiting an online shopping store. It follows a
closed workload model and includes actions like vis-
iting the home page, login, adding product to cart, etc.

4Jmeter: https://jmeter.apache.org

Algorithm 3: Microservice Graph Helper
Functions
1 Function getReqRate(Microservice Graph G, Node service):
2 req rate←− 0
3 for each (m,n) ∈ G do
4 if n == service then
5 req rate←− req rate+G[m][n][′DR′]

6 return req rate

7 Function updateReqRate(Microservice Graph G, Node service,
new req rate):

8 for each (m,n) ∈ G do
9 if n == service then

10 G[m][n][′DR′]←−
new req rate∗G[m][n][′ReqRateRatio′]

11 Function updateDownstreamRate(Microservice Graph G,
Node service, new req rate):

12 for each (m,n) ∈ G do
13 if m == service then
14 G[m][n][′DR′]←− new req rate∗

G[m][n][′DownstreamRateRatio′]

Table 5: Resource request and limit of Teastore services.

Service Name CPU Memory
Webui 1200mCore 512MB

Persistence 900mCore 512MB
Auth 900mCore 512MB

Recommender 800mCore 512MB
Image 1100mCore 512MB

Jmeter acts like users’ browsers and sends requests se-
quentially to the Teastore front-end service using a set
of threads. The number of threads controls the rate at
which Jmeter sends requests to the front-end service.
We deployed Jmeter on a stand-alone virtual machine
with 16 vCPU and 60GB of memory running Ubuntu
18.04 as the operating system.

6.2 Results and Discussion

To compare the behaviour and effectiveness of Wa-
terfall autoscaler with HPA, we applied the increas-
ing workload described in the previous section to the
front-end service of the Teastore application for 25
minutes. Figures 9-13 show the average CPU utiliza-
tion and replica count for each service in the Teast-
ore application throughout the experiment. The red
dashed line in CPU utilization plots denotes the CPU
utilization threshold that both autoscalers use as the
scaling threshold. The green dashed line in each ser-
vice’s replica count plot shows the ideal replica count
for that service at each moment of the experiment.
The ideal replica count is the minimum number of
replicas for the service which is enough to handle the

https://jmeter.apache.org
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Figure 9: The CPU utilization and number of replicas for
the Webui service.

incoming load and keep the CPU utilization of the
service below the threshold. According to Figures 9-
13, HPA scales a service whenever the service’s aver-
age CPU utilization goes above the scaling threshold.
However, Waterfall scales a service in two different
situations: 1) the CPU utilization of the service goes
beyond the scaling threshold; 2) the predicted CPU
utilization for the service exceeds the threshold due
to scaling of another service. Therefore, when Water-
fall scales a service while its CPU utilization is below
the threshold, it must be due to the predicted perfor-
mance degradation of the service as a result of scaling
of another service(s).

As Figure 9 shows, for the Webui service, both au-
toscalers increase the replica count when the CPU uti-
lization is above the threshold with some delay com-
pared to the ideal state. According to Figure 8, as
Webui is the front-end service and no other internal
services depend on it, scaling of other services does
not compromise the performance of the Webui ser-
vice. Hence, all Waterfall’s scaling actions for the
Webui service can be attributed to CPU utilization.

As can be seen in Figure 10, we observe that Wa-
terfall scales the Persistence service around the 6th

minute, although the CPU utilization is below the
threshold. We attribute this scaling action to the deci-
sion for scaling the Webui service in the same mon-
itoring interval that leads to an increase in the CPU
utilization of Persistence service as Webui service de-
pends on Persistence service. In contrast, as we can
see in Figure 10, the HPA does not scale the Persis-
tence service at the 6th minute. Consequently, a short
while after the 6th minute, when the second replica
of Webui service completes the startup process and is
ready to accept traffic, the CPU utilization of Persis-
tence service increases and goes above the threshold.
The other scaling action of Waterfall for Persistence
service after the 15th minute is based on CPU utiliza-
tion.

Results for the Auth service shown in Figure 11
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Figure 10: The CPU utilization and number of replicas for
the Persistence service.
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Figure 11: CPU utilization and number of replicas for Auth
service.

suggest that the increase in the replica count of Auth
around the 6th minute is based on the prediction for
the impact of scaling of the Webui service, as the
CPU utilization of Auth is below the threshold during
this time. On the other hand, we can see that at 6th

minute, the HPA does not increase the replica count
for Auth service. Therefore, after adding the second
replica of Webui, the CPU utilization of Auth reaches
the threshold. The other scaling action of Waterfall
for Auth after the 20th minute is based on the CPU
utilization.

According to the Image service results in Fig-
ure 12, Waterfall scales the Image service around the
11th minute. This scaling action is due to scaling the
Webui service that depends on Image service from
two to three replicas in the same monitoring interval.
However, HPA does not scale the Image service si-
multaneously with Webui causing an increase in the
CPU utilization of the Image service. For Waterfall,
as Figure 12 shows, there is a sudden increase in the
CPU utilization of Image service right before the time
that the second replica of Image service is ready to ac-
cept traffic. This sudden increase in CPU utilization
of Image service is because of the time difference be-
tween the time that Webui and Image services com-
plete the startup process and reach the ready state.
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Figure 12: The CPU utilization and number of replicas for
the Image service.
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Figure 13: The CPU utilization and number of replicas for
the Recommender service.

During the interval between these two incidents, the
Webui service has three replicas; therefore, its down-
stream rate to Image service increases while the sec-
ond replica of the Image service is not ready yet.

For the Recommender service, as Figure 13 illus-
trates, during the whole time of the experiment, the
CPU utilization is below the threshold. Consequently,
there is no scaling action for both autoscalers.

Putting the results of all services together, we can
see that the Waterfall autoscaler predicts the effect of
scaling a service on downstream services and scale
them proactively in one shot if it is necessary. There-
fore, it takes fewer actions to maintain the CPU uti-
lization of the application below the threshold. For
example, around the 6th minute, we can see from Fig-
ures 9, 10, and 11 that Waterfall autoscaler scales the
Persistence and Auth services along with Webui in the
same monitoring interval. However, HPA scales these
services separately in different monitoring intervals.

To quantify the effectiveness of Waterfall com-
pared to HPA, we evaluate both autoscalers in terms
of several metrics. Figure 14 shows the total number
of transactions executed per second (TPS) for Water-
fall and HPA throughout the experiment. It can be
seen that Waterfall has a higher cumulative TPS than
HPA thanks to timely scaling of services.
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Figure 14: Cumulative Transaction Per Second (TPS) of
Waterfall and HPA autoscalers.

Table 6: Comparison of Waterfall and HPA autoscalers in
terms of performance metrics.

# HPA Waterfall
Total Request 727270.0±12369.95 796867.4±4594.77

TPS 484.55±8.23 530.93±3.06
Response Time 20.47±0.36 18.67±0.11

We repeated the same experiment five times and
calculated the average of the total number of served
requests, TPS, and response time for both autoscalers
over these runs. Table 6 shows the results along with
the 95% confidence interval. It can be seen that TPS
(and the total number of served requests) is 9.57%
higher for Waterfall than HPA. The response time for
Waterfall is also 8.79% lower than HPA.

Additionally, we have calculated the following
metrics for both autoscalers and presented them in Ta-
ble 7:

• CPU>Threshold time: The percentage of time
that CPU utilization of the service is above the
threshold.

• Underprovision time: The percentage of time that
the number of service replicas is less than the ideal
state.

• Overprovision time: The percentage of time that
the number of service replicas is more than the
ideal state.

It can be seen that for all services except the Recom-
mender service, both autoscalers have a nonzero value
for CPU>T. However, CPU>T is less for Waterfall
in all services. Moreover, Waterfall yields a lower
underprovision time and zero overprovision time for
all services. Despite the overprovisioning of HPA for
two services, we observe that Waterfall still provides
a higher TPS and better response time; we attribute
this to the timely and effective scaling of services by
the Waterfall autoscaler.



Table 7: Comparison of Waterfall and HPA in terms of CPU>Threshold(T), overprovision, and underprovision time.

Service
CPU >T Underprovision Overprovision

HPA Waterfall HPA Waterfall HPA Waterfall
Webui ∼31% ∼16% ∼54% ∼15.33% 0% 0%
Persistence ∼16% ∼4% ∼28.66% ∼7.33% 0% 0%
Auth ∼6.33% ∼0.33% ∼32% ∼8% 26% 0%
Image ∼13.33% ∼0.33% ∼28% ∼6% 24% 0%
Recommender 0% 0% 0% %0 0% 0%

7 CONCLUSION

We introduced Waterfall, a machine learning-based
autoscaler for microservice applications. While nu-
merous autoscalers consider different microservices
in an application independent of each other, Waterfall
takes into account that scaling a service might have an
impact on other services and can even shift the bottle-
neck from the current service to downstream services.
Predicting this impact and taking the proper action in
a timely manner could improve the application per-
formance as we corroborated in this study. Our eval-
uation results show the efficacy and applicability of
our approach. In future work, we plan to explore the
feasibility of adding vertical scaling to the Waterfall
autoscaling approach.
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