
1

Should you Upgrade Official Docker Hub Images in
Production Environments?
Sara Gholami1, Hamzeh Khazaei2, Cor-Paul Bezemer1

Abstract—Docker, one of the most popular software con-
tainerization technologies, allows a user to deploy Docker images
to create and run containers. While Docker images facilitate
the deployment and in-place upgrading of an application in
a production environment by replacing its container with one
based on a newer image, many dependencies could change at
once during such an image upgrade, which can potentially be
a source of risk. In this paper, we study the official Docker
images on Docker Hub and explore how packages are changing
in these images. We found that the number of package changes
varies across different types of applications and that often the
changing packages are utility packages. Our study takes a first
important look at potential risks when doing an in-place upgrade
of a Docker image.

Index Terms—Dependency upgrades, Downgrades, Docker,
Docker Hub, Containerization

I. INTRODUCTION

Containerization is a popular approach to deploy software
systems [6]. One of the enabling technologies for container-
ization is Docker, an open-source framework to deploy con-
tainers in different computing environments [2]. Docker con-
tainers are composed of an image that encapsulates software
code and all its required package and library dependencies [6].
As a result, deploying Docker containers into a production
environment and applying in-place upgrades by replacing them
with containers created from newer images is easy. However,
with every upgrade of a Docker image, many packages
could change at once, which could e.g., result in reduced
performance or security of the application.

Several related work studied the Docker images available
on Docker Hub from a security point of view [13], [16], [17].
For instance, Shu et al. [13] studied over 300,000 Docker
images for the spread of vulnerabilities from one image to
another image that uses it. They found that images inherit
security vulnerabilities from their parent image. Similarly, Ze-
rouali et al. [16] showed that vulnerabilities in npm packages
might impact Docker images.

Besides the potential security risks in Docker images, there
is another potential yet unexplored risk: the risk of changing
many components of a functional system at once. The risk
of package changes was studied in different environments
and languages such as Node.js, and Java [8], [9], [12], [15].
These studies show that package changes can lead to broken
functionality, poor performance, or security vulnerabilities in
the applications that depend on the packages. As a result,

1Department of Electrical and Computer Engineering, University of Al-
berta, Edmonton, Canada. E-mail: {sgholami, bezemer}@ualberta.ca

2Department of Electrical Engineering & Computer Science, York Univer-
sity, Toronto, Canada. E-mail: hkh@yorku.ca

although applying in-place upgrades on Docker images is
easy, it can put the whole system at risk through issues that
are caused by internal packages.

We study the package changes in official Docker images
(images that are reviewed by the Docker team) in the
Docker Hub registry. We focus on the native (operating
system), Node, and Python packages and investigate which
types of applications tend to have more package changes.

Our study is the first to show how frequent changes are
happening in the packages used by different types of appli-
cations on Docker Hub. This important new view on the
Docker ecosystem helps to raise awareness with developers
of containerized software systems of the necessity of being
cautious when upgrading Docker images in a production
environment.

II. DOCKER AND DOCKER HUB

Docker [5] is a container virtualization technology [1] that
puts together several kernel-level technologies such as LXC
and Cgroups to facilitate the deployment and use of contain-
ers. Docker provides interfaces to create and deploy contain-
ers. Docker containers are lightweight, packaged applications
that can run on different computing environments without
modification. Docker relies on two major components: the
Docker Engine, which is the virtualization technology, and
Docker Hub, a service for sharing Docker images [2].
Docker containers are created from Docker images by

executing the docker run command. Docker Hub is
where Docker images are stored by default, which means that
by default, docker push uploads an image to Docker Hub
and docker pull downloads an image from Docker Hub.
To run a container, first, an image is pulled from Docker
Hub by executing the docker pull command, and then
by executing the docker run command, the image is used
to create a container. Each image is created based on a
DockerFile, a text file consisting of a series of commands
to create an image. In the first line of a DockerFile, the
operating system is specified, such as Ubuntu, meaning that
the packages required for Ubuntu are added to the final image.
Based on the application, different languages can be added to
the DockerFile, such as Python and Node.js, which means
that packages required for these languages will be added to
the final image. In general, the used packages in an image are
either packages that are native to a Linux distribution such
as debian, arch, or alpine, or packages that are installed by
popular package managers such as PyPy, npm, or CRAN [16].
Docker Hub [4] is Docker’s default registry for finding

and sharing container images. Currently, there are over 3



2

million repositories in Docker Hub. Each repository is a
collection of images, which allows users to share container
images with other users, such as their team members or
customers. Images in a repository are identified by unique
user-identified tags. The following four types of repositories
are available on Docker Hub:

1) Community repositories are maintained and delivered
by community developers, including all users with a
Docker Hub account. As a result, there is no guarantee
on security, maintainability, or following best practices
for development in these repositories. More than 99%
of the Docker Hub repositories (over 3.3M) are com-
munity repositories.

2) Verified repositories are published and maintained by
verified third-party publishers such as IBM or Mi-
crosoft [10]. There are 339 verified repositories on
Docker Hub.

3) Official repositories are reviewed and published by a
team that is sponsored by Docker Inc. Docker com-
munity members can contribute to developing the official
images. Images in the official repositories exemplify
DockerFile best practices and ensure that security
updates are applied in a timely manner. There are 160
official repositories.

4) Certified repositories are a special type of verified
repository that are built following best practices, tested
and validated against the Docker Enterprise Edition
platform and APIs, passed security requirements, and are
collaboratively supported [10]. There exist 51 certified
repositories on Docker Hub.

III. METHODOLOGY

Figure 1 displays the steps of our methodology for studying
package changes in official Docker Hub images. We detail
each step below.

Step 1: Selecting Repositories: We selected the Docker
Hub official repositories as these 160 repositories are consid-
erably more popular than the other types of repositories. Our
analysis of the repositories shows that the official repositories
have a median pull count of 10 million, while the community
repositories have a median pull count of 45. Likewise, the
median star count is 271 for the official repositories and 0 for
the community repositories. In addition, as Docker Inc.
sponsors a team to verify and publish the official repositories’
content, users can be more confident about the credibility of
the images in the official repositories. Therefore, we focused
our study on the official repositories. We excluded the Scratch
and OpenSUSE repositories as they did not contain images.
Hence, we study 158 repositories.

Step 2: Collecting Image Tags: We retrieved the list of
available tags for each repository using the code provided
by source{d} [14] with a few modifications to retrieve all
available tags. We collected a list of almost 37K tags from the
official repositories.

Step 3: Collecting Packages and Latest Update Dates:
We downloaded the images and analyzed their packages using
the code provided by source{d} [14]. We focused on the

native (used by the operating system), Node (for Node.js
applications), and Python packages. All studied repositories
contained native packages, six contained Node packages, six
contained Python packages, and two contained both Node and
Python packages. In addition, we collected the latest update
date for each image by executing the docker inspect
command.

Step 4: Identifying Package Changes: In the last step, we
study the package changes when upgrading an image. We split
the images in each repository into versioning branches, as
images in different branches might use different packages, and
comparing them would not be insightful. Figure 2 shows an
example timeline of how branches could evolve in a repository.
In this example repository, there is a branch with the alpine
ending, which indicates those images are using alpine, a Linux
distribution. As the branches may progress independently,
we should not compare images from different branches. For
example, we did not compare 1.1-alpine to 1.1.1 as they are
from different branches. After identifying the branches, we
sorted the images in each branch based on their latest update
date. However, there were cases in which several images
were updated on the same day. In these cases, we manually
sorted the images based on the versioning specified in the
tags. As tag names do not follow any naming convention,
we could not automate this process. Some repositories used
the release date as their version number (e.g., 20200415), and
some used semantic versioning to indicate major, minor, and
patch releases (e.g., 1.13.2).

In addition, the tags in the TomEE, NeuroDebian, ROS,
BuildPack-Deps, and AdoptOpenJDK repositories were not
clearly dividable into branches. For example, in the ROS
repository, all of the tags are names, such as lunar-perception-
stretch and melodic-perception. Therefore, we excluded these
five repositories from our analysis.

Finally, we compared the packages in each image with
its adjacent image in the same branch to identify major,
minor, or patch upgrades and downgrades. To determine if a
change is an upgrade or downgrade, we compared the numbers
and characters in the package versioning. For instance, a
version change from 1.3.0 to 2.0 or from 1.3-a to 1.3-b is
an upgrade. A change from version 2.1.0 to 2.0 or from
3.3-b to 3.3-a is a downgrade. In addition, we needed to
determine if a change is major, minor, or patch. Based on
the semantic versioning definition [11], major changes make
incompatible API changes, minor changes add functionality
in a backwards compatible manner, and patch changes make
backwards compatible bug fixes. To identify each type of
change, we separated the numbers in the version tags. If the
first digits were different, then the change is major. If the
second digits were different, it is a minor change. Otherwise,
it is a patch change. For example, version 1.2.0 to 2.0 is a
major change, while a change from version 1.2.0 to 1.3.1 is a
minor change, and a version change from 1.2.0 to 1.2.1 is a
patch change.

There are 14 categories of official repositories on Docker
Hub (Analytics, Application Frameworks, Application Infras-
tructure, Application Services, Base Images, Databases, De-
vOps Tools, Featured Images, Messaging Services, Monitoring,



3

Which types of applications tend to
have more package changes?

Docker Hub

Pull 37K
images

Get 37K latest
update dates

Extract
packages

List of packages
and latest update

dates

Collecting Packages and 
Latest Update Dates

Identify
package
changes

Package
changes

Identifying
Package Changes

Break down
repositories

into branches

Sort images in
branches

Selecting Repositories

Docker Hub

Retrieving
repository tags

37K repository
tags

Collecting Image Tags

Docker Hub

158 official
repositories

Selecting
repositories

Fig. 1: Overview of our data collection process for our study on package changes in Docker Hub repositories

Time

1.1 1.1.1 1.2

2.0 2.1 2.1.0

1.1-alpine 1.2-alpine 1.2.1-alpine

1.2.1

3.0 3.1 3.1.1 3.1.2

1.3-alpine

Fig. 2: An example of branches in a repository over time

Operating Systems, Programming Languages, and Storage).
From the 153 studied official repositories, 115 belong to one or
two of these categories. We categorized 38 official repositories
that did not belong to any category as Others. We used these
categories to compare the package changes in repositories of
different categories.

IV. RESULTS

There is a median of 8.6 upgrades per image across
official Docker images. Figure 3 displays the distribution of
major, minor, and patch upgrades in images of different cat-
egories. The Application Services applications have a median
number of 1.4, 2.2, and 11.1 major, minor, and patch upgrades,
respectively, which are the highest medians across categories.
More specifically, in the Application Services category, the
ZNC application has the highest number of upgrades (6.2
major upgrades, 21.9 minor upgrades, and 79.2 patch up-
grades). The Analytics category has the second-highest median
number of major (0.6) and patch (8.1) upgrades, and the third-
highest median number of minor (1.5) upgrades. Afterward,
the Programming Languages, Application Infrastructure, and
Databases categories have the next highest median number of
patch upgrades.

There is a median of 2.1 downgrades per image across
official Docker images. Figure 4 illustrates the distribution
of major, minor, and patch downgrades per image across
different categories. The Analytics applications with 0.4, 0.8,
and 3.8 have the highest median number of major, minor, and
patch downgrades. The Application Infrastructure, Application
Services, and Programming Languages categories have the
second-highest median number of package downgrades in
major, minor, and patch changes, respectively.

An
al
yt
ics

Ap
pl
ica

tio
n 
Fr
am

ew
or
ks

Ap
pl
ica

tio
n 
In
fra

st
ru
ct
ur
e

Ap
pl
ica

tio
n 
Se
rv
ice

s

Ba
se
 Im

ag
es

Da
ta
ba
se
s

De
vO

ps
 T
oo
ls

Fe
at
ur
ed
 Im

ag
es

M
es
sa
gi
ng

 S
er
vi
ce
s

M
on
ito

rin
g

Op
er
at
in
g 
Sy
st
em

s

Ot
he
rs

Pr
og
ra
m
m
in
g 
La
ng

ua
ge
s

St
or
ag
e

0

1

6

19

53

Nu
m
be
r o

f u
pg

ra
de
s p

er
 im

ag
e

Major upgrade
Minor upgrade
Patch upgrade

Fig. 3: Median number of upgrades in each category

Images of Analytics applications are the least stable.
The official images specify a median of up to 36 third-party
packages. Figure 5 shows the median number of packages
per image specified in each category. As can be seen, the
Operating Systems and Base Images categories have the lowest
median number of packages, which is why these applications
also have the lowest median number of package changes in
both upgrades and downgrades. The images in the Operating
Systems and Base Images applications tend not to add many
additional packages and provide the base operating system
in an image. Although the images in the Application Ser-
vices category have one of the highest median numbers of
packages changes, the median number of packages used in
these applications is not the highest. In contrast, applications
in the Analytics category have the highest median number of
package changes and total packages used in the images. This
finding suggest that images for the Analytics applications are
less stable than images for other types of applications.

The packages that are changed the most often are
common utility packages. There are over 9K different pack-
ages used in the official Docker images. The ones with the
most changes are utility packages such as tzdata, base-files,
libsystemd0, libudev1, and openssl. In many cases, when up-
grading a system, we do not want to upgrade utility packages



4

An
al
yt
ics

Ap
pl
ica

tio
n 
Fr
am

ew
or
ks

Ap
pl
ica

tio
n 
In
fra

st
ru
ct
ur
e

Ap
pl
ica

tio
n 
Se
rv
ice

s

Ba
se
 Im

ag
es

Da
ta
ba
se
s

De
vO

ps
 T
oo
ls

Fe
at
ur
ed
 Im

ag
es

M
es
sa
gi
ng

 S
er
vi
ce
s

M
on
ito

rin
g

Op
er
at
in
g 
Sy
st
em

s

Ot
he
rs

Pr
og
ra
m
m
in
g 
La
ng

ua
ge
s

St
or
ag
e

0

1

6

19

53

Nu
m
be
r o

f d
ow

ng
ra
de
s p

er
 im

ag
e

Major downgrade
Minor downgrade
Patch downgrade

Fig. 4: Median number of downgrades in each category

An
al

yt
ics

Ap
pl

ica
tio

n 
Fr

am
ew

or
ks

Ap
pl

ica
tio

n 
In

fra
st

ru
ct

ur
e

Ap
pl

ica
tio

n 
Se

rv
ice

s

Ba
se

 Im
ag

es

Da
ta

ba
se

s

De
vO

ps
 T

oo
ls

Fe
at

ur
ed

 Im
ag

es

M
es

sa
gi

ng
 S

er
vi

ce
s

M
on

ito
rin

g

Op
er

at
in

g 
Sy

st
em

s

Ot
he

rs

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s

St
or

ag
e0

5
10
15
20
25
30
35

M
ed

ia
n 

nu
m

be
r o

f p
ac

ka
ge

s p
er

 im
ag

e

Fig. 5: Median number packages in each category

unless absolutely necessary, as such upgrades might cause
incompatibilities. In addition, newer versions of these utility
packages may contain bugs. Therefore, practitioners need to
carefully check the packages which are changing in an image
upgrade and consider the consequences on their system.

Summary: Practitioners need to be cautious when
doing in-place upgrades of images from the official
Docker Hub repositories as in all studied applica-
tions, many packages are changing.

V. RELATED WORK

Studies on Docker Hub: Most of the existing work on
Docker Hub focuses on the security aspect of Docker
images [13], [16], [17]. In addition, Ibrahim et al. [7] studied
the similarity of Docker images on Docker Hub across
repositories, to guide users when selecting a Docker image.
Their study differs from ours as we focus on image upgrades.
Zhao et al. [18] studied duplication of files in images on
Docker Hub from the point of view of reducing the overall
storage requirements of Docker Hub.

Package Updates: Prior studies on package dependencies
focused on several environments (e.g., Maven) and languages
(e.g., Java and Node.js). Cogo et al. [3] studied downgrades in

npm. Kerzazi et al. [8] studied botched releases in an applica-
tion for 1.5 years. Botched releases are releases that cause
abnormal behaviors such as poor performance or crashes.
Kerzazi et al. show that 22.5% of the releases are botched,
which significantly affects depending systems. Raemaekers
et al. [12] conducted a study on version changes of the
jar files in Maven repository where about one-third of the
major changes and one-third of the minor changes had at
least one breaking change. Breaking changes are vital as they
can have a significant impact on the client’s software system
and lead to compilation errors and crashes. In a study by
Mezzetti et al. [9] on Node.js libraries, they found that 5%
of the packages have been affected by breaking changes due
to a minor or patch update in their dependencies. Xavier et
al. [15] studied breaking changes in updates of 317 Java
libraries, where 14.8% of changes caused incompatibilities
with previous versions.

VI. THREATS TO VALIDITY

Internal Validity: To sort the images in each repository, we
first separated the images into possible branches. This process
has been done manually as there is no concept of branch
defined on Docker Hub. We did not include repositories
in our study when we were not sure about the branches.
Future studies should investigate automated approaches for
identifying branches from version numbers. In addition, in
our study we assume that the packages follow the semantic
versioning principle.

External Validity: Future studies should investigate whether
our findings hold for non-official Docker images. Also, while
we found native packages in all of the images, only a few
images used Node (6) and Python (6) packages. Future studies
should analyze changes in Docker images for other types of
packages (such as R packages).

VII. CONCLUSION

In this paper, we studied the official Docker Hub reposi-
tories and analyzed over 37K images in these repositories for
their native (operating system), Node, and Python packages.
Our study shows that a median of 8.6 packages are upgraded
during an image update, which is high compared to a tradi-
tional update scenario in which only the target application is
updated. Our study takes the first important step to studying
package changes in Docker images. We encourage future
studies to further investigate and quantify the risk with doing
in-place image updates. To answer the question in the paper
title: Should you upgrade official Docker Hub images in
production environments? Probably not without thoroughly
testing them first, or at least before investigating which pack-
ages are changing together with the main application.

REFERENCES

[1] C. Anderson. Docker [software engineering]. IEEE Software, 32(3):102–
c3, 2015.

[2] T. Bui. Analysis of Docker security. arXiv preprint arXiv:1501.02967,
2015.

[3] F. R. Cogo, G. A. Oliva, and A. E. Hassan. An empirical study of
dependency downgrades in the npm ecosystem. IEEE Transactions on
Software Engineering, pages 1–15, 2019.



5

[4] Docker Inc. Docker hub. https://hub.docker.com/. Accessed: 2020-09-
28.

[5] Docker Inc. Empowering app development for developers — docker.
https://www.docker.com/. Accessed: 2020-09-28.

[6] IBM Cloud Education. Containerization. https://www.ibm.com/cloud/
learn/containerization. Accessed: 2020-05-08.

[7] M. H. Ibrahim, M. Sayagh, and A. E. Hassan. Too many images on
DockerHub! how different are images for the same system? Empirical
Software Engineering, 25:4250–4281, Sep 2020.

[8] N. Kerzazi and B. Adams. Botched releases: Do we need to roll back?
Empirical study on a commercial web app. In Proceedings of the
IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), volume 1, pages 574–583. IEEE, 2016.

[9] G. Mezzetti, A. Moller, and M. T. Torp. Type regression testing to
detect breaking changes in Node.js libraries. In Proceedings of the
32nd European Conference on Object-Oriented Programming (ECOOP
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[10] J. Morgan. Introducing the new Docker Hub. https://www.docker.com/
blog/the-new-docker-hub/. Accessed: 2020-04-17.

[11] T. Preston-Werner. Semantic versioning 2.0.0. https://semver.org/.
Accessed: 2020-04-24.

[12] S. Raemaekers, A. van Deursen, and J. Visser. Semantic versioning and
impact of breaking changes in the Maven repository. Journal of Systems
and Software, 129:140–158, 2017.

[13] R. Shu, X. Gu, and W. Enck. A study of security vulnerabilities on
Docker Hub. In Proceedings of the 7th ACM on Conference on Data
and Application Security and Privacy, pages 269–280. ACM, 2017.

[14] source{d}. sourced datasets. https://github.com/src-d/datasets. Ac-
cessed: 2020-09-28.

[15] L. Xavier, A. Brito, A. Hora, and M. T. Valente. Historical and impact
analysis of API breaking changes: A large-scale study. In Proceedings of
the IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 138–147. IEEE, 2017.

[16] A. Zerouali, V. Cosentino, T. Mens, G. Robles, and J. M. Gonzalez-
Barahona. On the impact of outdated and vulnerable JavaScript packages
in Docker images. In Proceedings of the IEEE 26th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
pages 619–623. IEEE, 2019.

[17] A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona. On the
relation between outdated Docker containers, severity vulnerabilities,
and bugs. In Proceedings of the IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 491–
501. IEEE, 2019.

[18] N. Zhao, V. Tarasov, H. Albahar, A. Anwar, L. Rupprecht, D. Skourtis,
A. S. Warke, M. Mohamed, and A. R. Butt. Large-scale analysis of
the Docker Hub dataset. In IEEE International Conference on Cluster
Computing (CLUSTER), pages 1–10, 2019.


