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ABSTRACT
Burstable instances have recently been introduced by cloud
providers as a cost-efficient alternative to customers that do
not require powerful machines for running their workloads.
Unlike conventional instances, the CPU capacity of burstable
instances is rate limited, but they can be boosted to their
full capacity for small periods when needed. Currently, the
majority of cloud providers offer this option as a cheaper
solution for their clients. However, little research has been
done on the practical usage of these CPU-limited instances.
In this paper, we present a novel autoscaling solution that
uses burstable instances along with regular instances to han-
dle the queueing arising in traffic and flash crowds.We design
BIAS Autoscaler, a state-of-the-art framework that leverages
burstable and regular instances for cost-efficient autoscal-
ing and evaluate it on the Google Cloud Platform. We apply
our framework to a real-world microservice workload, and
conduct extensive experimental evaluations using Google
Compute Engines. Experimental results show that BIAS Au-
toscaler can reduce the overall cost up to 25% and increase
resource efficiency by 42% while maintaining the same ser-
vice quality observed when using conventional instances
only.
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1 INTRODUCTION
Elasticity is one of the most important concepts of cloud com-
puting. The ability to dynamically adapt the cluster capacity
based on the current demand is pivotal for maintaining Qual-
ity of Service (QoS) and optimizing the cost. Autoscaling
the resources can not only reduce the overall cost for the
customer, but also preserve the Service-level Agreements
(SLAs) and Service-level Objectives (SLOs) of the services.
This is because most of the workloads face unpredicted vari-
ations in traffic during their usage. Sometimes, these spikes
in usage can cause interference in the QoS metrics, leading
to a negative impact on both the cloud providers and the
customers.
Many autoscaling solutions try to mitigate these prob-

lems by provisioning additional computational resources to
handle unpredicted spikes on their workloads. This is com-
monly known as overprovisioning the number of resources
above the minimum required to handle sudden variation in
traffic. The downside of this approach, however, is because
this extra capacity is often not entirely used during normal
demand, which in turn, leads to waste of resources and conse-
quently, increasing the cost. To avoid wasting computational
resources, cloud providers such as Amazon Web Service
(AWS), Google Cloud Platform (GCP) and Microsoft Azure
introduced burstable instances. We believe that this type of
instance is the key to designing cost-efficient solutions on
the public cloud, especially for small clusters.
Burstable instances are virtual machines whose CPU ca-

pacity is limited to a predefined threshold. Even though they
are meant to operate under their operational CPU threshold,
the CPU capacity can be boosted to the full standard capacity
for small periods. Each cloud provider implements its own
proprietary system to manage these instances, and they are
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usually based on tokens for CPU credits. AWS, for example,
controls the frequency by which their burstable instances
can operate above the CPU threshold by using a token-based
system. Each minute the instance operates below its CPU
threshold, the customer receives a token that can then be
spent to boost these instances to CPU values above its thresh-
old for one minute. Similarly, Microsoft Azure implements
a token-like control system for their burstable virtual ma-
chines.

When we compare the cost of burstable instances with reg-
ular ones, we can see huge differences in the overall savings
one could have. For instance, the Google Compute Engine
N1 shared-core g1-small instance (with 1 vCPU at 50% sus-
tained rate and 1.7 GB of memory) cost 52% less than the N1
standard 1 instance (with 1 vCPU with 3.75 GB of memory).
This difference can be as high as 10 times depending on the
type of instance and the cloud provider.

AWS offers several types of EC2 burstable instances under
the families T2, T3, T3a, and T4g. On this cloud provider, for
on-demand EC2 instances, the cost of burstable instances
varies from 90% to up to 10 times less than regular instances.
This figure is similar for GCP as well, reaching up to 8
times in savings for some burstable instances. Unlike AWS,
though, GCP offers only two families of burstable instances:
E2 shared-core and N1 shared-core.
We introduce the Burstable Instance Autoscaler (BIAS),

an application autoscaler that combines different instance
types for scaling virtual machines in the public cloud. BIAS
Autoscaler was evaluated on GCP, and it uses the already ex-
isting infrastructure and services of GCP to add and remove
resources as needed as well as distribute the traffic among the
different types of instances. We use the Square-Root Staffing
Rule to calculate the number of required servers on the fly,
and evaluate our framework on a microservice workload.
Our work presents two main contributions:

• We use a well-known technique to create a new so-
lution for reducing the cost and increasing the effi-
ciency of autoscaling systems by leveraging burstable
instances in combination with conventional ones. We
implement and evaluate our solution in our prototype
BIAS Autoscaler, which is open-sourced on GitHub1,
and validate our technique under two distinct sce-
narios: transient queueing arising in traffic, and flash
crowds.

• We demonstrate how our framework can be extended
to other cloud providers, and how it can be used to
manage other serverless services based on containers
such as Kubernetes. We also explain how to implement
customized scaling policies on BIAS Autoscaler.

1https://github.com/BIAS-Cloud/BIAS-Autoscaler

2 BIAS AUTOSCALER DESIGN
In this section, we present the architecture and design of
BIAS Autoscaler, and show how it uses a combination of
regular and burstable instances to reduce cost on the public
cloud. We evaluate BIAS Autoscaler on GCP, and the source
code is openly accessible on GitHub1.
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Figure 1: Cluster architecture managed by BIAS Au-
toscaler on GCP.

2.1 The architecture of BIAS autoscaler
BIAS Autoscaler is a ready-to-use autoscaler with little to
no configuration required for cloud systems. Even though
it was primarily evaluated and developed on GCP, it can be
extended to other public cloud providers such as AWS and
Azure. To the best of our knowledge, BIAS Autoscaler is the
first open-source autoscaler fully tested and validated on
GCP that leverages burstable instances for scaling Google
Compute Engine instances. BIAS Autoscaler is also the first
autoscaler to use the Google Load Balancer to dynamically
change the traffic distribution among the instances. It uses
the existing GCP services to manage and monitor the clus-
ter, and it was developed using the Java programming lan-
guage in combination with the Micronaut Framework. A
full step-by-step guide and documentation is provided on
GitPages2. We used the Google Cloud Java API and SDK for
scaling and controlling the cluster, and the Google Cloud
Stackdriver Monitoring Client for monitoring the necessary
metrics. BIAS Autoscaler can be deployed either on a Google
Compute Engine instance or run as a container on Google
Kubernetes Engine. It is a reactive autoscaler that uses the
Google Load Balancer to adjust the CPU utilization of the

2https://bias-cloud.github.io/BIAS-Autoscaler
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burstable instances based on traffic distribution. Figure 1
shows how BIAS Autoscaler is used to scale out/in the re-
sources on GCP. Its architecture is divided into three distinct
modules: monitor, scaling and controller. The internal archi-
tecture of BIAS Autoscaler is shown in figure 2.
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Figure 2: BIAS Autoscaler architecture.

2.1.1 CPU utilization of burstable instances. BIASAutoscaler
works by maxing out the CPU utilization of the burstable
instance only when the cluster is scaling out new resources.
It sets the CPU threshold of the burstable instances to its
default value (𝑇 ) as soon as the new resources are added and
are ready to be used in the cluster. This CPU threshold is
refereed as weights (𝑤𝑏 ) on BIAS Autoscaler. By doing this,
the full capacity of the burstable instances is used when the
cluster requires additional computational power to process
the current demand. On this strategy, BIAS Autoscaler will
boost the burstable instances only when necessary.

Monitoring: The monitoring component is in charge of
acquiring metrics from the load balancer and the instances.
Since we validated BIAS Autoscaler on GCP, the Google
Load Balancer and the Google Compute Engines were used. It
fetches metrics from these cloud services through the Google
Cloud Monitoring service.

Scaling: This component is where the scaling algorithm
is implemented. It reads the metrics provided by the moni-
tor component, and calculates the number of burstable and
regular instances of the current demand. This information
is then fed to the controller module so it can perform the
scaling of the cluster. Currently, BIAS Autoscaler supports

only the Square-Root Staffing Rule (SR Rule) scaling policy,
but any policy can be applied.

Controller: This module is the core of BIAS Autoscaler.
The number of calculated burstable (𝑘𝑏_𝑐 ) and regular (𝑘𝑟_𝑐 )
instances is provided to this component, and it outputs the
necessary changes to the cluster. Once again, since we vali-
dated BIAS Autoscaler on GCP, it uses the Google Cloud Java
API to control the load balancer traffic distribution among
the instance groups, and scales out/in the Google Compute
Engine instances. The controller module is also responsible
for updating the weights of the CPU threshold (𝑤𝑏 ) of the
burstable instances. Whenever it scales out the regular or
burstable instances, it sets𝑤𝑏 to 100% to burst the burstable
instances to their maximum capacitywhile the new resources
are being provisioned in the cluster. This helps to reduce the
CPU load of the regular instances while the new resources
are added to the cluster. As soon as the calculated number
of instances (𝑘𝑏_𝑐 , 𝑘𝑟_𝑐 ) are identical to the current number
of instances (𝑘𝑏, 𝑘𝑟 ), BIAS Autoscaler sets𝑤𝑏 to its original
threshold value, 𝑇 .
Although BIAS Autoscaler was primarily designed and

validated on GCP, it can be extended to AWS and Azure as
well. In order to control EC2 instances on AWS, though, a cus-
tomized load balancer is required since the AWS Elastic Load
Balancer does not support dynamic adjustments in the traf-
fic distribution among different instance groups. The same
approach should be applied when using BIAS Autoscaler
to control Azure Virtual Machines on Microsoft Azure. A
generic interface is provided so users can implement a class
to communicate with their customized load balanced using
RESTful/gRCP APIs. Additionally, BIAS Autoscaler can be
extended to manage services based on containers on GCP
and other cloud providers as well. For GCP, a generic in-
terface is provided to implement procedures to control the
Google Kubernetes Engine using the Google Cloud SDK.

2.2 Scaling policy
Both predictive and reactive scaling algorithms can be ap-
plied on BIAS Autoscaler. However, we chose a reactive ap-
proach to scale our resources. Our reactive strategy assumes
that the future demand resembles the current state. We use
the well-accepted Square-Root Staffing Rule (SR Rule) as our
scaling strategy for BIAS Autoscaler. Many works [4, 5, 13]
have been developed around autoscaling cloud resources
based on the SR Rule in recent years. Since the Google Cloud
Load Balancer allows the distribution of the traffic based
on the CPU utilization of instance groups, we leverage this
feature to control the utilization level of the burstable in-
stances. Based on the previous development done on [10],
we consider our system as an M/M/k queueing system.
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Theorem 2.1. (Square-Root Staffing Rule [6]) Given
an M/M/k queueing system with arrival rate 𝜆 and
service rate 𝜇, and 𝑅 = 𝜆

𝜇
, where 𝑅 is large, let 𝑘∗𝛼

denote the least number of servers needed to ensure
that the probability of queueing 𝑃

𝑀/𝑀/𝑘
𝑄

< 𝛼 . Then

𝑘∗𝛼 ≈ 𝑅 + 𝑐
√
𝑅 where 𝑐 is the solution for the equation

𝑐Φ(𝑐)
𝜙 (𝑐) = 1−𝛼

𝛼
whereΦ(.) denotes the c.d.f. of the standard

Normal distribution and 𝜙 (.) denotes its p.d.f.

The parameter 𝑐 is related to the probability of queueing,
𝛼 , which determines the mean response time of our service,
𝐸 [𝑇 ]. Equation 1 shows how we can calculate 𝐸 [𝑇 ] using
𝑃𝑄 where 𝜌 = 𝜆

𝑘𝜇
is the system utilization [6]. We assumed

the probability of queueing (𝑃𝑄 ) of our service as 10% for
all benchmark tests we performed, but this property can be
easily changed on BIAS Autoscaler configuration file.

𝐸 [𝑇 ] = 1
𝜆
· 𝑃𝑄 · 𝜌

1 − 𝜌
+ 1
𝜇

(1)

Therefore, the SR Rule used to determine the number of
servers 𝑘 required to handle an arrival rate 𝜆 is 𝑘𝑐 = 𝑅 +𝑐

√
𝑅.

Note that the value of 𝑅 is known, and it varies depending
on the cluster configuration and workload used. We use the
approach proposed on [4] to determine the number of and
regular (𝑘𝑟_𝑐 = 𝑅) and burstable (𝑘𝑏_𝑐 = 𝑐

√
𝑅) instances.

3 EVALUATION
We conducted two different experiments to evaluate the per-
formance of BIAS Autoscaler for scaling virtual machines
using Compute Engines on GCP. In order to evaluate the per-
formance of our framework, we created the Load Microser-
vice andmade it open-sourced on GitHub3. This microservice
simulates a web-server application with a RESTFul API with
adjustable CPU load and processing time. The full documen-
tation of the Load Microservice is available on GitPages4.
We use the Locust5 benchmark tool for our performance
tests. Locust is an open-sourced, scriptable and scalable per-
formance testing tool that allows customized use test cases
written in Python. We analyzed the performance of our au-
toscaler during a transient queueing in traffic and a flash
crowd scenario. For the former case, we evaluated BIAS Au-
toscaler in three distinct configurations, and then compared
our performance to the rule-based GCP autoscaler. Finally,
we tested BIAS Autoscaler for handling flash crowds and
analyzed the QoS metrics and the SLOs violations for each
test. All the experiments are openly accessible on GitHub6.

3https://github.com/BIAS-Cloud/Load-Microservice
4https://bias-cloud.github.io/Load-Microservice
5https://locust.io
6https://github.com/BIAS-Cloud/Experiments

3.1 Transient Queueing
For this experiment, we simulated a fixed increasing rate in
traffic for a long period, and we analyzed the QoS metrics
and SLOs violations when running BIAS Autoscaler with
both burstable and regular instances compared to regular
instances only and burstable instances only. In addition to
evaluating QoS metrics and SLOs violations, we compare
the computational power and efficiency of the burstable
instances with their equivalent regular ones.

Experimental Setup: We created a cluster on GCP with
burstable and regular on-demand instances. We used N1
shared-core g1-small instances as our burstable instances, and
N1 standard 1 as our regular ones. Both these instance types
have 1 identical vCPU (Intel(R) Xeon(R) CPU @ 2.30GHz).
The main difference between them is that the burstable in-
stances are CPU limited to 50% utilization, but they can boost
themselves up to 100% of 1 vCPU for small periods. For mem-
ory, however, our instances differ a bit. Whereas our regular
instances have 3.75 GB RAM, our burstable ones have only
1.7 GB RAM. The CPU utilization target of the burstable
instances was set to 40%. We first perform three benchmark
tests: one with BIAS Autoscaler scaling regular instances
along with burstable ones, one scaling regular instances only
where 𝑘𝑟 = 𝑅 + 𝑐

√
𝑅, and another one scaling burstable in-

stances only where 𝑘𝑏 = 𝑅 + 𝑐
√
𝑅. We then compare the

results of these three tests with another performance test
using the GCP autoscaler with regular instances only set to
scale out each time the CPU utilization reaches 50%.

SLOs: The SLO for the average response time was set to
150 ms with 95% of the requests below 300 ms, and no error
is allowed.

Service rate 𝝁: We run a benchmark test to determine
the service rate experimentally. This test consisted of run-
ning a regular instance for 60 minutes under a fixed arrival
rate. The service rate for our evaluation tests was set to
𝜇 = 17 requests/s for each regular instance. The probability
of queueing 𝑃𝑄 for all tests we performed is 10%.
Load generation: For simulating the user traces, we cre-

ated a test scenario on Locust where the arrival rate 𝜆 in-
creases linearly from 10 to 75 request/s in a window of 108
minutes.

Results:We reduced the cost by 25%when replacing some
conventional instances with burstable ones. To achieve this,
we compared the cost of running BIAS Autoscaler with regu-
lar and burstable instances (figure 3) against running it with
regular instances only (figure 4). The scaling algorithm used
in both tests was the SR Rule, and we considered 𝑐

√
𝑅 as the

number of burstable instances. This scaling strategy differs
from a pure reactive scaling algorithm since more than one
instance can be added at once under the SR Rule as can be

https://github.com/BIAS-Cloud/Load-Microservice
https://bias-cloud.github.io/Load-Microservice
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https://github.com/BIAS-Cloud/Experiments
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seen on figure 5(c) and figure 6(c). Another surprising find-
ing was the outstanding performance reached when running
BIAS Autoscaler with burstable instance only. This is because
this configuration resulted in savings of 56% compared with
regular instances only with almost no impact in the SLOs.
However, this high saving in cost may be questionable since
all burstable instances ran above their CPU threshold of 50%
during the entire test as can be seen in figure 6(d). Therefore,
since the burstable instances on GCP are highly workload
dependable, they may not sustain long periods running at
full CPU capacity.
This 25% cost savings can be understood better when

we analyze the resource utilization during the two test sce-
narios. While we maintained an average CPU usage of our
resources of approximately 45% when running with regu-
lar instances only, this figure was roughly 64% when we
combined burstable and regular ones (considering we rate
the CPU of the burstable instances at 50%). As a result, we
increased our resource efficiency by 42% when using a com-
bination of these two instance types. This demonstrates how
BIAS Autoscaler can be used to not only reduce the cost,
but also to increase the overall resource efficiency. Although
relying solely on burstable instances appears to be the best
cost-effective option at first glance, the black-box managing
system of GCP states that there is no guarantee it can sustain
long periods running on maximum CPU capacity. Thus, we
do not advocate that cluster administrators should replace
all their conventional instances with burstable ones instead.
However, this demonstrates that burstable instances can in-
deed be used for replacing some regular instances as long
as their CPU load is correctly managed by the autoscaler to
avoid long runs at their maximum CPU capacity, as demon-
strated in figure 3(d).
Even though we observed a slightly better average re-

sponse time (7% only) when using regular instances only,
the SLOs were not impacted when using burstable instances.
The 95th percentile performance was also approximately
equivalent for the two tests. The reason for that is because
the maximum 95th percentile response time reached when
running burstable and regular instances combined was less
than 25% higher than running BIAS Autoscaler with regular
instances only. Despite this small difference, both tests met
the required SLOs for the 95th percentile.
Table 1 compiles the results of all four tests performed.

Note that when we compare side-to-side BIAS Autoscaler
with the rule-based GCP autoscaler, we can see that BIAS
Autoscaler reduces the cost by approximately 18% while
maintaining roughly the same SLOs.

Transient Queueing with Burstable and Regular Instances
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Figure 3: Results for the transient queueing experi-
ment with burstable and regular instances.

3.2 Flash Crowd
For this experiment, we simulated a flash crowd for a short
period, and we analyzed the QoS metrics and SLOs viola-
tions when running BIAS Autoscaler with both burstable
and regular instances compared to regular instances only
using the same configuration as for the transient queueing
experiment. We performed a benchmark test where BIAS
Autoscaler runs with regular and burstable instances com-
bined. The key difference of this experiment is the workload
used. The SLO for the average response time was set to 300
ms with 95% of the requests below 1000 ms, and no error is
allowed.

Load generation: For simulating a flash crowd, we cre-
ated a test scenario on Locust where the arrival rate 𝜆 in-
creases from 10 request/s to three different picks with a
maximum of 85 requests/s in a window of 33 minutes in
total. We run this load against two distinct configurations of
BIAS Autoscaler. The figure 7(a) shows the load used for the
flash crowd experiment.

Results: The outcome of this experiment was similar to
the transient queueing benchmark test, with approximately
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Table 1: Results of performance tests for transient queueing.

Test Scenario Average Response Time (ms) Maximum 95th Percentile (ms) Cost (10−3 USD)

Regular instances only 110 210 493
Rule-based GCP autoscaler 108 220 450

Burstable and regular instances 118 280 371
Burstable instances only 120 220 218

Transient Queueing with Regular Instances Only
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Figure 4: Results for the transient queueing experi-
ment with regular instances only.

25% reduction in cost when replacing some conventional in-
stances with burstable ones. Even though both performance
tests where BIAS Autoscaler ran with burstable and regular
instances and the one with regular instances only met all
requited SLOs, the average response time achieved by the
later configuration outperformed the former one by almost
2 times. Since we did not overprovision the cluster, the av-
erage and the 95th percentile of the response time for the
flash crowd experiment running with both burstable and
regular instances was almost double the figure seen on the
transient queueing experiment. The average response time
for the flash crowd experiment when BIAS Autoscaler ran

Transient Queueing with GCP Autoscaler
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Figure 5: Results for the transient queueing experi-
ment with the rule-based GCP autoscaler set to 50%
using regular instances only.

with burstable and regular instances was 232 ms whereas for
regular instances only was 141 ms.
Although the response time achieved when combining

burstable and regular instances was almost two times higher
than when using regular instances only, the cost savings
should be considered when using this approach for scaling
cloud resources. Overall, using the SR Rule algorithm for
scaling regular and burstable instances was adequate for sce-
narios where the traffic increases at a steady and constant
rate. For this application, BIAS Autoscaler was able to main-
tain roughly the same SLOs as for regular instances only at
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Transient Queueing with Burstable Instances Only
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Figure 6: Results for the transient queueing experi-
ment with burstable instances only.

the same time the cost was reduced by 25%. However, the
same outcome was not reached when using this strategy
for handling flash crowds. For these sudden variations in
traffic, a fine-granular tuning of the scaling frequency and
the number of burstable instances used should be performed
to avoid impacting the SLOs.

4 RELATEDWORK
Many works [2, 7, 11] have been done on the theoretical
analysis of burstable instances, and some frameworks were
proposed to AWS. The framework CEDULE developed on
[2] and [11] investigates the usage of burstable instances on
AWS, and proposes an adaptive scheduling framework to
optimize performance and reduce cost on cloud providers.
Even though the authors of CEDULE claimed it could be used
in any cloud provider, they only tested it on AWS. Unlike our
framework, CEDULE focuses only on token-based systems
to manage burstable instances (present on AWS and Azure)
while BIAS Autoscaler addresses the practical applications of
these instances on non-token-like systems such as the one on
GCP. Also, CEDULE is not open-source, and no information
about its internal architecture is provided by its authors.

Flash Crowd with Burstable and Regular Instances
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Figure 7: Results for the flash crowd experiment with
burstable and regular instances.

Similar to CEDULE, BurScale [4] leverages burstable in-
stances to reduce cost and handle flash crowds on AWS.
Unlike our solution, BurScale is validated and applied only
on AWS, and it uses a customized load balancer. Even though
BurScale is an open-source solution, there is no information
on how it could be used on a non-token-like system such
as GCP. When using BIAS Autoscaler on GCP, however, the
load balancer used is the Google Cloud Load Balancer for
controlling the traffic of the burstable instances.
The authors on [7] advocate the usage of burstable in-

stances for workloads that do not require large amounts of
computational resources to run, and that occasionally need
to run with additional resources for small periods. They also
propose the first analytical model for burstable instances
that takes into account the QoS metrics and CPU credits
of burstable instances to derive a mathematical model that
maximizes cost and resource efficiency for customers and
cloud providers for IaaS (Infrastructure as a Service) clouds.
Although their framework can be used to model burstable
instances on AWS and Azure, there is no information on how
these instances can be used on GCP.
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Some solutions [9, 12] were developed on the efficiency of
reactive rule-based autoscaler on Google Compute Engine,
whereas others [1, 8] proposed scaling policies for Google
Kubernetes Engine. However, no studies were found on the
practical usage of burstable instances on GCP. The analysis
on [14] presents a complete overview and comparison be-
tween burstable instances from AWS and GCP, and explains
in detail the token mechanisms used by AWS to manage
these instances.
MRburst, which was developed on [3], is also a perfor-

mance scheduler to control, among other things, the CPU
utilization of burstable instances in the network level on
AWS to maximize cost efficiency. However, this approach
differs from ours since we control our resource utilization
on the application level performing load balancing configu-
ration changes.

5 CONCLUSION AND FUTUREWORK
Burstable instances can be the key to improving resource effi-
ciency and reducing costs on the public cloud. We presented
BIAS Autoscaler, an autoscaler that leverages burstable in-
stances on the public cloud as the only of its kind fully val-
idated and integrated on the Google Cloud Platform. We
applied a known scaling model to validate our concept, and
achieved promising results on both savings and resource
efficiency. By replacing some of the conventional instances
with burstable instances, BIAS Autoscaler was able to re-
duce the cost by 25% while maintaining the same service
SLOs compared with traditional approaches using regular
instances only.

We evaluated BIAS Autoscaler under a transient queueing
and a flash crowd experiment, and showed its efficiency on
Google Cloud Platform on a microservice workload. The
outcome of these performance experiments showed great
potential to increase resource efficiency and reduce the cost.
These results demonstrated that BIAS Autoscaler can in-
crease resource efficiency by 42% without interfering with
the quality of the service when using burstable instances.
In the future, we want to make BIAS Autoscaler fully

compatible with AWS using a customized load balancer. We
also intend to develop a performance modeling for using
burstable instances on GCP. Many models [2, 7, 11, 14] have
been developed for the token-like system on AWS, but no
study was found on analytical modelling of burstable Google
Compute Engines on GCP.
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