
Application Deployment Strategies for Reducing the
Cold Start Delay of AWS Lambda

Jaime Dantas, Hamzeh Khazaei and Marin Litoiu
jaimecjd,hkh,mlitoiu@yorku.ca

Department of Electrical Engineering & Computer Science
York University

Toronto, Ontario, Canada

Abstract—Serverless computing has emerged in recent years
as the new computing paradigm adopted by key players in the
industry for software development. This new paradigm has seen
rapid growth in adoption due to its unique billing model and
scaling characteristics. Public cloud providers such as Amazon
Web Services (AWS) offer several configurations and language
runtimes for their serverless functions. Although extensively
explored by the research community, this field still lacks current
studies that address the many challenges developers face when
leveraging serverless functions for real-world applications. One
of these challenges that are often overseen by many programmers
is the cold start problem which is present in any serverless
application. For this reason, we propose the first study to
characterize the underlying cold start impacts caused by the
choice of language runtime, application size, memory size and
deployment type on AWS Lambda. In this paper, we analyze the
performance of the container-based deployment and ZIP-based
deployment of AWS Lambda using a variety of language runtimes
and applications running with different function configurations;
then we propose guidelines for developers and cloud managers to
consider when deploying/managing the workloads on the cloud.

Index Terms—AWS Lambda, Cold Start, Function as a Service,
Serverless Computing, Performance Benchmark

I. INTRODUCTION

Cloud computing has become the new standard for running
applications and workloads in the industry. Most of the compa-
nies nowadays host their services on private or public clouds,
and public cloud providers such as Amazon Web Services
(AWS), Google Cloud Platform (GCP) and Microsoft Azure
(Azure) offer support to most of the services required by
complex systems and applications. Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Service as a Service
(SaaS) are the most popular cloud computing service models
used in the industry [1].

Serverless computing, often referred to as Function as a
Service (FaaS), is the most recent cloud computing paradigm
that originated from the SaaS model. With this new computing
paradigm, developers deploy small pieces of code named
functions and the cloud provider is in charge of provisioning
all the infrastructure and resources required to run these
functions. Unlike IaaS or PaaS, where cloud admins still
need to provision their cluster, FaaS does not require resource
provisioning or complex configurations. The cloud provider
is responsible for managing the FaaS infrastructure, allowing
customers to deploy and execute their functions in an efficient

and faster way compared to the older computing models. With
FaaS, cloud providers charge per request, not per resource
used. The value of each execution varies according to the
function configuration and the region it is executed.

Most of the public cloud providers have their own FaaS
platforms and services. Cloud Functions are functions offered
by GCP where customers can deploy and run their code with
zero server management [2]. Azure also provides their FaaS
service named Azure Functions [3], IBM Cloud Functions are
the serverless functions offered by IBM [4] and AWS has the
AWS Lambda functions [5]. AWS is currently the only public
cloud provider to offer different deployment types for their
FaaS services. Previously, all major FaaS platforms, including
AWS Lambda, supported only one deployment type. Cus-
tomers were required to upload their function source code into
the cloud platform either manually or by compacting the code
and deploying it automatically. However, in December 2020,
AWS introduced the new deployment type named container-
based deployment for AWS Lambda [6]. Now, customers can
build their own container using the container images provided
by the company. The size limitation that was once present on
all serverless platforms is now eliminated on AWS Lambda
since they allow the container to be as large as 10GB.

One of the most important challenges that all FaaS platforms
share is the cold start delay. When a function is deployed in the
cloud, a set of sequential processes is executed when this func-
tion is first invoked. First, the function source code is fetched
from storage, deployed in a container, and then initialized.
Once the first request is handled, the following requests are
executed faster for a certain period. Then, since the container
is already initialized, the function enters into idle mode, and
all following requests are executed instantaneously. However,
cloud providers can decommission the function container at
any time, and whenever it does, clients will experience a cold
start again for their requests. This issue is often addressed
by researchers as ”the cold start problem”, and many works
[8]–[10] try to mitigate this problem faced by FaaS. Still,
most of these approaches used to reduce the cold start time
of serverless functions often require additional software and
architectures which are often seen as complex implementations
by developers since it requires extra computational resources
and maintenance. Additionally, the lack of knowledge about
the benefits and drawbacks of each deployment type of AWS



Download
Function Code

Cold Start / Initialization Time Execution Time

Uncompress
Function Package

Copy Function
Code To Container

Execute
Function Code

Bootstrap
the Runtime

New Request

Start New
Container

Remove
Container

Download
Function Image

ZIP DEPLOYMENT

Start New
Container

Execute
Function Code

Remove
Container

Idle

Idle

CONTAINER DEPLOYMENT

Cold Start / Initialization Time Execution Time

Fig. 1. AWS Lambda lifecycle (adapted from [7]).

Lambda makes this matter even worse.
Before the release of the new container-based deployment

on AWS Lambda, developers had to compress their source
code - including the external libraries and dependencies - in a
ZIP file which had a size limit of 250MB (uncompressed).
This file is usually referred to as the ”Function package
file”, and when the Lambda is executed for the first time,
it imports and uncompresses this function package which is
stored in an S3 Bucket, then loads the function for execution
in a container. This process is time-consuming, especially
for large package sizes. The new container-based deployment
eliminates the unzip and container building process, which in
turn, could lower the initialization time. For this deployment
type, a Docker image is built locally and then sent to be
stored on the Amazon Elastic Container Registry (ECR) for
use with AWS Lambda. AWS providers base container images
for all supported language runtimes and system architectures.
Although this new container-based deployment shows many
advantages over its traditional counterpart, little research has
been conducted using this new approach.

In this paper, we aim to fill in this knowledge gap by
showing how to use application and platform knowledge to
reduce the initialization time on AWS Lambda. We analyze
the new container-based deployment and compared it against
the traditional package deployment named ZIP deployment
of AWS Lambda. We test the performance of several real-
world applications under different language runtimes and
architectures, and derive guidelines that developers and cloud
admins can use to mitigate the cold start problem on AWS
Lambda. We aim to answer three research questions:

• RQ-1: What is the impact of the AWS Lambda package
size on the initialization time when using the container-
based deployment?

• RQ-2: How does the memory allocated to the AWS
Lambda function affect the initialization time when using
the ZIP deployment compared to the container-based
deployment?

• RQ-3: Does the machine learning model size have the

same impact on both deployments of AWS Lambda
functions?

The contributions of our research are:
• Presenting the first extensive analysis of AWS Lambda

that takes into account the ZIP and container-based
deployment, the language runtime, the memory and the
package size of the function.

• Suggesting guidelines for reducing the cold start delay
on AWS Lambda by choosing the ideal deployment type
based on application knowledge.

This paper is structured as followed: We start by explain-
ing the approach we used for analyzing the performance of
the container-based deployment and the applications tested
(section II), then we present the results for the execution
time and cold start performance of the two deployment types
under different configurations (section III). The package size
impact on the initialization time (section III-B2), the memory
size (section III-B3), the model size (section III-B4), and the
language runtime choice (section III-B5) are discussed, and
guidelines are suggested. Finally, we discuss the related work
(section IV) before concluding this paper (section V).

II. METHODOLOGY

In this section, we go over the details of the methodology
proposed in this paper. We answer RQ-1 and RQ-2 by
analyzing the cold start and execution time of 13 serverless
functions deployed with the ZIP deployment and container-
based deployment and different memory sizes. Finally, we
answer RQ-3 by studying the response time of a machine
learning function deployed with 5 distinct model sizes using
the two deployment types and a wide range of memory
configuration.

A. Language Runtimes and Libraries Used

The choice of libraries and language runtimes to use in our
analysis was based on the most used libraries and language
runtimes on AWS Lambda in the industry. We have selected
a wide range of Python libraries that are used in many studies



with serverless functions [11], [12]. In particular, we focus
on image processing and machine learning applications using
the TensorFlow, Pillow and Sklearn libraries which are also
analyzed on [13]. The most used language runtimes on AWS
Lambda are Python, Node.js and Java, respectively [14], [15].
However, Node.js applications particularly have never been
tested with the new container-based deployment on AWS
Lambda.

B. Function Deployment Configuration

Fig. I shows the two deployment types of AWS Lambda
in detail. The lifecycle of the container-based deployment of
AWS Lambda is not documented by the company. However,
we assumed that the AWS Lambda Manager starts the con-
tainer as soon as it is fetched from storage in the ECR. This
process could, in theory, speed up the start-up time for some
language runtimes since it does not need to build the container
image. We consider the cold start time - also referred as the
initialization time - the period from the invocation of the
function to the time the code is ready for execution. Although
the objectives of RQ-1 and RQ-2 over the ZIP deployment
have already been answered in previous studies [16], [17], the
effects on the container-based deployment of AWS Lambda
remain unknown to this date. Finally, the execution time is
the time that the function takes to execute when its container
is up and running.

C. Function Response Time Measurement

We invoke each Lambda using the AWS API Gateway
through a RESTful API. In particular, we follow the same
benchmark configuration adopted on [18] where AWS API
Gateway is used for creating endpoints for invoking the
Lambdas. AWS CloudWatch is used for storing the execution
log of both the Lambda and the API Gateway call. We use the
Locust1 benchmark tool for our performance tests. Locust is an
open-source, scriptable, and scalable performance testing tool
that allows customized use test cases written in Python. Fig.
2 shows the architecture view used for each Lambda function.
We use the fields @billedDuration and @initDuration from
the original Lambda log file to calculate the execution time
and initialization time of each execution, respectively. For the
execution time analysis, we check the @logStream to extract
the container identifier to validate the time by which the
container is decommissioned and a new one is launched.

LambdaAPI Gateway CloudWatch Log File

HTTP

Locust

Fig. 2. Architecture built on AWS.

1https://locust.io

D. Function Workloads Used

We evaluate the performance of the two Lambda deploy-
ments with 13 serverless functions and 3 different language
runtimes. These functions are coded in Python, Node.js and
Java and tested on both arm64 and x86 architectures. A wide
range of libraries and package sizes are used on each of these
applications. All the 13 Lambdas are invoked by the Amazon
API Gateway. Table I compiles all applications used.

Image Classifier 230: Consists of a binary image classifica-
tion function using one of the most popular and comprehen-
sive open-source machine learning libraries, the scikit-learn
(sklearn) [19]. It receives an image of any size, and it predicts
which of the two classes this picture belongs to. In order to
do the predictions, we first reduce the image to 59×59 pixels
using the Pillow library, then we extract the Histogram of
Oriented Gradients (HOG) and run a Support Vector Machines
(SVMs) model. We train 5 SVMs models with different sizes
(1MB, 7MB, 12MB, 16MB and 20MB) to evaluate the impact
of the model size in the cold start of the application. These
models are deployed on the Image Classifiers 230 to 249 from
smallest to largest, respectively.

Linear Regression: This application uses the open-source
scientific computing library for Python SciPy. Since its initial
release in 2001, SciPy has become the most used library for
scientific algorithms in Python [20]. We compute a simple and
yet commonly used mathematical operation with this library,
the least-squares regression for two sets of measurements.

Image Black and White: We convert an image to black
and while using the OpenCV library. This library is widely
used among developers for computer vision applications.

TF Image Classifier: It is a popular open-source serverless
application that uses the TensorFlow Lite library. It consists
of a multi-class image classifier using the on-device inference
framework from TensorFlow and both the ZIP and container-
based deployments are available on GitHub2.

Resize and Feature: This function is part of the Image
Classifier 230, and it performs the resize and feature extraction
of an image of any size using the libraries Pillow and Numpy.

Resize: This application is a simple application used to
resize an image, and it is also part of the Image Classifier
230. It uses only the Pillow library.

Factorial: Performs the factorial of a given number. It does
not use any external libraries. There are three versions of this
application, one for each language runtime.

Large Size Node.js: This application uses some of the
most popular Node.js packages from the official NPM Registry
website3. It performs image processing as well as natural
language operations.

Medium Size Node.js: This function performs natural
language operations using the well-known package natural.

Large Size Java: It is a popular open-source application
that performs image processing and mathematical operations

2https://github.com/edeltech/tensorflow-lite-on-aws-Lambda
3https://www.npmjs.com



TABLE I
SERVERLESS APPLICATIONS.

App Name ZIP Size (MB) Image Size (MB) Architecture Runtime Libraries
Python

Image Classifier 230 230 480 arm64 Python 3.8 Pillow, Numpy, Pillow, Numpy
Sklearn, Joblib, Scikit Image

Linear Regression 186 283 arm64 Python 3.8 Scipy, Numpy
Image Black and White 126 256 arm64 Python 3.8 OpenCV, Numpy, Pillow

TF Image Classifier 83 340 x86 Python 3.7 TensorFlow, Numpy, Pillow
Resize and Feature 64 210 arm64 Python 3.8 Pillow, Numpy

Resize 14 182 arm64 Python 3.8 Pillow
Factorial Python 0.004 176 arm64 Python 3.8

Node.js
Large Size Node 234 323 x86 Node 14 gulp-imagemin, jspdf, html-pdf,

natural, text-extractor, jimp
Medium Size Node 77 204 x86 Node 14 natural, sharp

Factorial Node 0.006 148 x86 Node 14
Java

Large Size Java 133 227 x86 Java 11 OpenIMAJ
Medium Size Java 15 188 x86 Java 11 iTextPDF

Factorial Java 10 185 x86 Java 11

using the award-winning library OpenIMAJ. This application
is openly available on GitHub4.

Medium Size Java: This function converts a text input to
a PDF document using the popular library ItextPDF.

We classify all 13 applications into different application size
groups according to the language runtime aiming to answer
RQ-1. The Image Classifier 230 is used to answer RQ-2 and
RQ-3, and finally, the three factorial applications are analyzed
to visualize the impact of the language runtime on the two
deployment types.

III. EXPERIMENTAL EVALUATIONS

We performed a combination of tests on both the AWS
Lambda ZIP and container-based deployments and analyzed
the execution time and initialization time of each configura-
tion. The experiments were conducted over an extended period
of time from December 28th, 2021, to January 18th, 2022.
All tests were performed in the AWS region us-east-1 where
each Lambda handles one request per time. The benchmark
tests were done using both the arm64 and x86 architectures.
We compared the two deployments using several metrics that
include the median, the 95th percentile and the average of
the response time and the initialization time, as well as the
cumulative distribution function (CDF) of all experiments.
We first discuss the experimental setup of each test, and
then present the results and discussion of the execution time
followed by all three research questions and the impact of the
language runtime. All the experiments are openly accessible
on GitHub5.

A. Experimental Setup and Data Collection

We first measured the execution time of all 13 applications
for both Lambda deployments. Each application was invoked
400 times with requests sent every 1 second. This interval
guarantees no queue is formed since the worst execution time

4https://github.com/eugenp/tutorials/tree/master/image-processing
5https://github.com/pacslab/serverless-iot-deployment

Image Container ZIP Package

Deployment

100

150

200

250

300

350

400

450

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Execution Time for 128MB

173.3
175.6

Distribution

Mean

Image Container ZIP Package

Deployment

10

20

30

40

50

60

70

80

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Execution Time for 512MB

32.6

34.2

Distribution

Mean

Fig. 3. Execution time for the Image Classifier 230.

is less than 1 second. During this period of approximately 7
minutes, none of the containers were decommissioned. All the
logs from AWS CloudWatch, including the Lambda and API
Gateway log files, were analyzed and validated. We studied the
execution time for 128MB, 256MB, 320MB, 384MB, 448MB
and 512MB memory configurations.

Then, we evaluated the cold start performance of all ap-
plications with different memory configurations. We invoked
the Lambdas 20 times with requests sent every 10 minutes.
In total, each test lasted 200 minutes, and it was conducted
with 128MB, 256MB, 320MB, 384MB, 448MB and 512MB
memory configurations. According to our benchmark tests, the
idle time of AWS Lambda was less than 10 minutes for all
programming languages. We use 10 minutes interval between
invocations to compute the cold start time of AWS Lambda.
This interval guarantees that each call is executed by a new
container.

The second set of tests for the cold start were aiming to
study the memory impact on the cold start time. We tested the
Image Classifier 230 under 128MB, 256MB, 320MB, 384MB,
448MB, 512MB, 640MB, 704MB, 768MB, 832MB, 896MB,
960MB, 1024MB, 1088MB, 1152MB, 1216MB, 1280MB,
1344MB, 1408MB, 1472MB, 2048MB and 3008MB memory



Cold Start Improvement of The Image Container (Average)

-9.3

5.6

6.2

14.8

38

21

78

-12.7

2.7

6.2

13.3

35.2

19.4

75.2

-16.7

-7.9

6.8

14.6

32.3

18.4

69.9

-17.8

-3.9

1.7

14.9

30.1

18.7

67.3

-21.7

-13.3

4.2

15.5

27.7

17.6

63.8

-25.7

-14.2

3.1

15.7

25.2

17.5

59.4

-27.7

-12.8

4.3

13.7

25

18.3

55.9

512 MB

512 MB

512 MB

512 MB

512 MB

512 MB

512 MB

458 MB

458 MB

458 MB

458 MB

458 MB

458 MB

458 MB

384 MB

384 MB

384 MB

384 MB

384 MB

384 MB

384 MB

320 MB

320 MB

320 MB

320 MB

320 MB

320 MB

320 MB

256 MB

256 MB

256 MB

256 MB

256 MB

256 MB

256 MB

192 MB

192 MB

192 MB

192 MB

192 MB

192 MB

192 MB

128 MB

128 MB

128 MB

128 MB

128 MB

128 MB

128 MB

-30 -20 -10 0 10 20 30 40 50 60 70 80 90

Improvement (%)

Factorial

Resize

Resize and Feature

TF Image Classifier

Image Back and White

Linear Regression

Image Classifier 230

ZIP

IS BETTER

CONTAINER

IS BETTER

Zip Package Size

1

14

64

83

126

186

230

0306090120150180210240

Size (MB)

Factorial

Resize

Resize and Feature

TF Image Classifier

Image Back and White

Linear Regression

Image Classifier 230

Fig. 4. Initialization time improvement of the container-based deployment over the ZIP deployment (left), and the ZIP package size (right) of all serverless
applications.

configurations. Finally, we used 5 SVMs models from different
sizes to study the relationship between the model size and cold
start time on both deployments. In order to do this, we used
different amounts of data to train these 5 models.

B. Results and Interpretations

We tested the execution time and cold start time of all
13 functions for both Lambda deployments, and present the
results for each research question below.

1) Execution Time: In order to answer RQ-1, RQ-2 and
RQ-3, we need to first validate whether or not the execution
time differ according to the deployment type. Therefore, we
analyzed the execution time of all 13 applications. Fig. 3 shows
the execution time distribution for two memory configurations
of the Image Classifier 230 application. As we can see, both
execution times are statistically equivalent. The same was
seen for the Node.js and Java applications. Furthermore, the
execution time of the AWS Lambda ZIP and container-based
deployments are equal for all memory sizes and language
runtimes. Although we have noticed a slight difference in the
execution time in favour of the container-based deployment,
both measurements are statically equivalent.

2) RQ-1: What is the impact of the AWS Lambda package
size on the initialization time when using the container-based
deployment?: On RQ-1 we want to study the impact of the
package size of the Lambda function on the ZIP and container-
based deployments. We first studied this on Python functions,
and then moved to the other programming languages. The right
chart of Fig. 4 shows the different sizes of the ZIP deployment.
We measured the initialization time of both deployments,
and then calculated the percentage of improvement of the
container-based deployment over the ZIP deployment. This
data is presented on the right chart of the Fig. 4.

We observe two trends with regards to the package size of
Python applications. The container-based deployment shows

a better performance for large package sizes and small mem-
ory configurations. For instance, the initialization time of
the Image Classifier 230 was 78% smaller than the ZIP
deployment for 128MB memory. As we increase the memory
size, this difference decreases and the two deployment types
become similar in cold start time. For most of our tests,
smaller memory configurations favoured the container-based
deployment since this Lambda deployment type presented a
smaller cold start time.

Our results contradict the academic work presented on [18]
where the container-based deployment of Python applications
showed worse initialization time than the ZIP deployment. Un-
like our experiments, the authors on [18] used only one Python
application - with a small package size - and tested it with one
memory configuration only. Even though they only evaluated
one specific scenario, they claimed that the container-based
deployment was worse than the ZIP deployment for interpreted
programming languages such as Python when it comes to cold
start time. In contrast, our results showed that the size of the
Lambda package - the ZIP archive or Docker container image
- is, in fact, a key factor in the initialization time of these two
deployments.

Another observation is that the package size impacts the
cold start time of both deployments. Small package sizes
had better initialization time with the ZIP deployment. For
the Python Factorial function, which has only 4kB in size,
the container-based deployment was worse than the ZIP’s for
all memory configurations with figures varying from 9.3%
to 27.7% worse initialization times for 128MB and 512MB,
respectively. These findings are in line with the results pre-
sented on [18], and it may be due to the fact that Python
functions are non-static binary programs, and consequently, all
libraries and modules have to be imported dynamically which
adds overhead in the initialization time of the container-based
deployment.



Cold Start Improvement of The Image Container NodeJS (Average)

-42.2

5.6

5.9

-46.3

1.1

-6.6

-49.7

5.4

-1.6

-50.6

-0.8

-0.4

-39.5

-2.1

-0.8

-36.8

-25.2

7.5

-47.7

-24.2

-1.3

512 MB

512 MB

512 MB

458 MB

458 MB

458 MB

384 MB

384 MB

384 MB

320 MB

320 MB

320 MB

256 MB

256 MB

256 MB

192 MB

192 MB

192 MB

128 MB

128 MB

128 MB

-60 -50 -40 -30 -20 -10 0 10 20
Improvement (%)

Factorial

Mid Size

Large Size

ZIP

IS BETTER

CONTAINER

IS BETTER

Cold Start Improvement of The Image Container JAVA (Average)

-7.7

1.6

-44.1

-8.3

-3.1

-45.4

-11.5

-2.8

-46.4

-11.5

-9.9

-36.9

-13.1

-7.6

-37.6

-10.7

-10.3

-37.9

-10

-11.2

-40

512 MB

512 MB

512 MB

458 MB

458 MB

458 MB

384 MB

384 MB

384 MB

320 MB

320 MB

320 MB

256 MB

256 MB

256 MB

192 MB

192 MB

192 MB

128 MB

128 MB

128 MB

-60 -50 -40 -30 -20 -10 0 10 20
Improvement (%)

Factorial

Mid Size

Large Size

ZIP

IS BETTER

CONTAINER

IS BETTER

Fig. 5. Initialization time improvement of the container-based deployment over the ZIP deployment of the Node.js (left) and Java (right) functions.

One of the most important findings is the inflection point by
which the ZIP deployment becomes better than the container-
based deployment. This can be seen when we analyze the
initialization time for the Resize application which has 14MB
in size, and it uses a popular Python library for image
manipulation - Pillow. From this data, we can see that the point
of inflection is located between 192MB to 256MB where the
container-based deployment becomes worse than the ZIP’s by
7.9%. This is because while for 192MB the former deployment
was 2.7% better than the latter one, for 256MB the container-
based was 7.9% worse than the ZIP deployment.

Therefore, we advocate that developers and cloud managers
should choose the container-based deployment whenever they
are using a large Python application with external libraries
and dependencies. In our tests, Python applications with sizes
equal to or larger than 64MB are better with the container-
based deployment for memory configurations of up to 512MB.
If, however, developers are deploying smaller Python applica-
tions of 14MB in size, for instance, further testing is necessary
to find out the best deployment according to their memory
needs. In our tests, Python applications with 14MB in size
and up to 192MB memory are better with the container-based
deployment. After this point, the ZIP deployment becomes a
more suitable option. Finally, small Python applications of
1MB or less in size that have no libraries or external modules
should be deployed using the ZIP deployment since it offers
a better initialization time.

Even though both Python and Node.js are dynamically-
typed languages, the performance of these languages under
the container-based deployment is different. The left chart of
Fig. 5 shows the percentage of improvement of the container-
based deployment for Node.js functions. For large Node.js
applications, the container-based deployment showed a similar
cold start compared to the ZIP deployment. Both the average
and 95th percentile were statically equivalent for most memory
sizes. For instance, for 320MB memory, the average differs in
only 0.43% in favour of the ZIP deployment. Although we
observed a tiny improvement in the average of the container-

128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024 1088 1152 1216 1280 1344 1408 1472 2048 3008

Memory (MB)

0

2

4

6

8

10

12

14

C
o
ld

 S
ta

rt
 (

s
)

0

2

4

6

8

10

12

14

Container-based 95th Percentile

ZIP 95th Percentile

ZIP Average

Container-based Average

Fig. 6. Initialization time of the Image Classifier 230 under different memory
configurations.

based deployment for small memory sizes of 5.9 %, the 95th
percentile of this deployment is in fact 10% worse than the
ZIP deployment. Therefore, the choice of deployment has
little to no impact on the initialization time of large Node.js
applications.

When it comes to small packages sizes, the same out-
come found for Python applications also applies to Node.js
functions. This is because the Node.js Factorial function was
also faster with the ZIP deployment. Similar to the Python
applications, as we increase the application package size, this
difference becomes smaller and the two deployments perform
similarly. This can be seen when we analyze the initialization
time for medium size Node.js applications. However, unlike
Python applications, Node.js applications performed better or
equal with the ZIP deployment on all package sizes. Therefore,
we recommend that cloud admins use this type of deployment
for Node.js applications of any package size up to the 250MB
limit.

Unlike the results seen with the dynamically-typed lan-
guages Python and Node.js, the performance of Java func-
tions, which is a is a statically-typed language, is quite distinct.
The right chart of Fig. 5 shows the percentage of improve-
ment of the container-based deployment for Java applications.



0 2000 4000 6000 8000 10000 12000 14000

Cold Start (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

D
F ZIP 128MB

ZIP 1472MB

Container 128MB

Container 1472MB

Fig. 7. CDF of Image Classifier 230 initialization time.

Overall, the ZIP deployment outperformed the container-based
deployment on all memory and package sizes. In fact, we
have noticed the opposite trend where larger applications
performed significantly better with the ZIP deployment. For
instance, the average cold start time of the container-based
deployment was 46.4% worse than the ZIP’s for the large
size Java function with 256MB memory configuration. As we
decrease the package size, this difference also decreases but
for almost all configurations the ZIP deployment is preferable.

Our results contradict the findings on [18] where a Golang
function - also a statically-typed language - is analyzed. The
authors on [18] advocate that statically-typed languages such
as Golang and Java have similar initialization times on both
deployments. However, they only tested one package size and
did not test Java applications. From our findings, we can also
conclude that the ZIP deployment should be used for Java
applications of any package size up to the 250MB limit.

Recommendations of RQ-1

• Python applications with large package sizes have
faster initialization time with the container-based
deployment while small applications are better
with the ZIP deployment. Our experiments show
that the inflection point is 64MB in size.

• Node.js applications with small package sizes
have faster initialization time with the ZIP de-
ployment while medium and large size ones have
approximately equivalent cold start time to some
extent.

• Java applications of any package sizes have faster
initialization time with the ZIP deployment.

3) RQ-2: How does the memory allocated to the AWS
Lambda function affect the initialization time when using
the ZIP deployment compared to the container-based deploy-
ment?: Moving on to RQ-2, we wanted to see if the memory
size had the same impact in the cold start time of the two
different deployments for all three language runtimes. First,
we analyzed only Python applications. Fig. 6 shows the Image
Classifier 230 under a wide range of memory configurations.
As expected, the container-based deployment presented a

128 192 256 320 384 448 512
Memory (MB)

2

4

6

8

10

12

14

16

C
o
ld

 S
ta

rt
 (

s
)

ZIP Deployment

230MB Package

236MB Package

241MB Package

245MB Package

249MB Package

128 192 256 320 384 448 512
Memory (MB)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

C
o
ld

 S
ta

rt
 (

s
)

Container-based Deployment

230MB Package

236MB Package

241MB Package

245MB Package

249MB Package

Fig. 8. Model size impact in the initialization time of the ZIP deployment
(left) and container-based deployment (right).

significantly smaller initialization time for memories from
128MB to 512MB. As we increase the memory size, this
difference gets smaller and the two deployments become
equivalent eventually.

This behaviour is seen when we analyze the average and
95th percentile initialization time for the 1472MB memory
configuration. Even though the average initialization time
of the container-based deployment is 8% better, the 95th
percentile is 5% worse. Thus, we assumed this is the point
where the two deployments reach the same minimum value.
In order to further investigate the initialization time of the
two deployments for very small and very large memories, we
plotted the CDF of 200 executions for 128MB and 1472MB
memory configurations on Fig. 7.

From the CDF on Fig. 7, we can see that the contained-
based deployment with 128MB memory configuration had
a cold start average 4.5× smaller than the ZIP deployment.
However, they have near-identical cold start CDFs for 1472MB
memory configuration. Thus, we conclude these two deploy-
ments have the same initialization time for memory config-
urations larger or equal to 1472MB. Therefore, developers
should consider the size of the application and the memory
allocated to the Lambda to decide on what deployment type
to choose. The analysis conducted on [16] and [17] also
suggests that using large memory sizes can reduce the cold
start effect in AWS Lambda when using the ZIP deployment.
Thus, our results validate this behaviour for the container-
based deployment as well.

However, function memory has little to almost no impact on
the initialization time of both Node.js and Java applications.
This is especially true for small size applications such as the
Factorial one. In both these languages, the memory played
no role in the performance of the cold start. The same was
also seen for large-size applications where the performance of
all memory configurations was similar. However, for medium-
size applications, the memory size does affect the performance
of the cold start. This is because both the Node.js and Java
applications showed a slightly better performance in favour
of the container-based deployment for small memory con-
figuration. As we increase the memory size of the medium
size Node.js function, for example, this difference becomes



smaller and after 256MB the ZIP deployment becomes better.
This behaviour was the same observed for medium Python
applications.

As a result, the impact of the Lambda memory on both
Node.js and Java functions depends on the package size.
We recommend that developers and cloud admins should
choose the container-based deployment only if the application
package size is between 15-77MB for Node.js applications
under small memory configurations. For both small and large
functions, Node.js and Java functions should use the ZIP
deployment instead. Finally, we tested both the arm64 and
x86 architectures on all applications, and they are equally in
performance. Thus, the architecture does not influence the cold
start time of Lambda applications.

Recommendations of RQ-2

• Small memory sizes, e.g., 128MB, make the
initialization time of the container-based deploy-
ment faster when deploying medium and large
size Node.js and Python applications compared
to the ZIP deployment.

• Very large memory sizes, e.g., 1472MB for
Python applications, make the initialization time
of both deployment types approximately equiva-
lent.

4) RQ-3: Does the machine learning model size have the
same impact on both deployments of AWS Lambda functions?:
Finally, RQ-3 investigates the effect of the model size in the
cold start of the functions. We tested the 5 SVMs models
and included them inside the original application Image Clas-
sifier 230. The 5 applications were named Image Classifier
230MB, 236MB, 241MB, 245MB and 249MB from smallest
to largest, respectively. Fig. 8 shows the effect the model
size has on the two deployments studied. As we expected,
the larger the model size, the higher the cold start time for
the ZIP deployment. Also, the curve concave decreases as we
increase the memory size for all model sizes under the ZIP
deployment. The container-based deployment, however, was
slightly less susceptible to the model size changes. While the
variation of the model size caused a 22% change in the cold
start time of the ZIP deployment, this figure was only 11%
for the container-based deployment under 128MB memory
configuration.

Therefore, changes in the model size of machine learning
applications are less likely to cause variations in the cold
start time of container-based deployment compared with the
ZIP’s. This is especially true when we analyze the cold start of
the Image Classifiers 241 and 245. The two curves for these
applications are approximately equivalent for the container-
based deployment. For example, for 256MB memory, these
two applications had only 0.33% difference in the initialization
time of the container-based deployment whereas for the ZIP
version this figure was 5.39%, which is roughly 17 times more
than the former deployment.

Container-based Deployment

Node.js Python Java
0

200

400

600

800

1000

1200

C
o
ld

 S
ta

rt
 (

m
s
)

95th Percentile

Average

ZIP-based Deployment

Node.js Python Java
0

200

400

600

800

1000

1200

C
o
ld

 S
ta

rt
 (

m
s
)

95th Percentile

Average

Fig. 9. Factorial function under different language runtimes and 128MB
memory configuration.

Recommendations of RQ-3

• Variations in the model size are less likely to
cause impact in the initialization time of the
container-based deployment compared to the ZIP
deployment.

5) Language Runtime Impact: Previous works have shown
that the choice of the language runtime affects the cold start
time of AWS Lambda [21], [22]. We extend RQ-1 and RQ-
2 by analyzing the impacts of the language runtime in the
cold start of serverless applications. We analyzed the average
and 95th percentile initialization time of the Factorial function
in Python, Node.js and Java. Fig. 9 compiles the cold start
time of these applications on both the ZIP and container-based
deployments for 128MB memory configurations.

Our findings show a noticeable impact of the language
runtime in the cold start of applications. As can be seen, both
deployments had the same trend where Node.js functions were
the fastest followed by Python and Java, respectively. Java
applications have the worse initialization time among all three
languages, with figures approximately 4 times higher than
the Node.js ones for the ZIP deployment. For the container-
based deployment, this figure is around 3 times which is still
representative. Our results follow the work present on [21],
[22] where is shown that Java functions have a high trail
latency compared to Python applications. However, our work
showed that Node.js applications have the best performance
which contradicts the works [21], [22] since they claim that
Node.js functions are in fact worse than Python applications.
One of the reasons may be due to the fact that these academic
benchmark tests were performed using an older version of all
language runtimes analyzed.

Our result is surprising since it also contradicts the work
on [18] where their authors state that the language runtime
has negligible implications for cold-start delays for the ZIP
deployment. As seen on the right chart of Fig. 9, the impact
of the programming language is significant for the 128MB
memory configuration. One of the possible reasons that can
explain this opposite outcome is the memory configuration
allocated to the Lambda. While we tested a wide range of
memory sizes - from 128MB to 3GB - the authors on [18] only



tested it with 2GB which may bias their findings. However, the
analysis performed on [16] and [17] also suggests that using
dynamically-typed languages such as Node.js and Python can
reduce the cold start effect in AWS Lambda when using the
ZIP deployment. Our study shows that this impact is also
seen with the container-based deployment in a corresponding
degree.

In conclusion, the container-based deployment had a better
initialization time for larger Python applications and small
memory configurations. Also, it is more suited to deploy
machine learning applications with embedded models. Python
applications larger or equal to 64MB in size should be de-
ployed as containers whenever they are running with 512MB
or less memory. Additionally, very large Python applications of
230MB or more in size are faster when using container-based
with up to 1472MB of memory. Finally, both Node.js and Java
applications have, in general, faster or equal initialization time
when using the ZIP deployment, especially for large memory
configurations.

IV. RELATED WORK

Prior work includes a number of frameworks and FaaS
architectures developed to mitigate the cold start time present
in most of the public cloud providers nowadays. WLEC [23]
and Pigeon [24] are alternative approaches to AWS Lambda
that reduce the initialization time, and can be integrated with
other serverless providers. Application knowledge is used on
[25] for reducing the duration of cold start by implementing
a lightweight choreography middleware for FaaS. However,
all these works are complex architectures that require extra
computational resources and maintenance in order to be used
with Lambda functions. Cloud admins and developers could
use our insights instead, and change the Lambda deployment
type according to their applications to significantly reduce the
initialization time.

Many benchmark tests addressed the impact of the memory
size and package size on the cold start of serverless functions.
Daniel et al. [26] studied the cold start time of a wide range
of applications on AWS Lambda, Google Cloud Functions,
Microsoft Azure Functions, and IBM Cloud Functions. This
type of performance analysis was also investigated on [26]–
[28], however, since no cloud provider supported container-
based function deployment at the time, no prior work was
developed using this new development type. Additionally,
the open-source benchmark suite for characterizing serverless
platforms ServerlessBench developed on [29] evaluates the
cold start time of functions with different sizes on AWS
Lambda using the ZIP deployment. Similar to our results, the
authors on [29] advocate that large-size functions suffer from
longer initialization time due to larger data transmission and
package import overhead. However, only Python applications
are studied on [29], and our work is the first to show that these
impacts could be mitigated by changing the deployment type
for some language runtimes.

The size limit of 250MB of AWS Lambda is challenging
for most of the machine learning applications since they use

large libraries and models. AMPS-Inf [30] is a framework
that solves this problem by partitioning customized libraries
and modules across a number of Lambda functions. Although
this solution can be used for large Lambda functions, AWS
Lambda now supports Docker container images of up 10GB
in size, and as demonstrated on our benchmark tests, this de-
ployment is ideal for large workloads. The choice of language
runtime is also discussed on [12], [21], [22], however, our
study is the first of its kind to address the container-based
deployment with Node.js and other programming languages.
In addition to the size limitation of the ZIP deployment,
many Internet of Things (IoT) and latency-critical applications
often face performance issues when using AWS Lambda due
to the cold start problem. The survey on [31] shows that
despite the many challenges the cold start delay brings to these
applications, they still use serverless functions platforms such
as AWS Lambda. Now, developers and companies can use
the insights we present in this paper to mitigate the cold start
problem these functions face.

The only study found that partially investigates the use
of container-based Lambdas is the STeLLAR benchmarking
framework [18]. STeLLAR is an open-source serverless bench-
marking framework that enables an accurate performance
characterization of serverless deployments. It evaluates the
cold start time of the ZIP and container-based deployments of
Lambda applications with two types of applications. However,
unlike our benchmark tests, the authors on [18] only tested
their applications with a 2GB memory configuration. Their
findings show that for small Python applications, the ZIP
deployment is recommended based on the initialization time.
Contrary to the aforementioned work, our findings suggest
that memory, package size and language runtime are pivotal
when choosing the best deployment type for better cold start
performance. Additionally, unlike the work presented on [29]
and our study where real-world applications were used and all
functions imports and uses external libraries and dependencies,
a random file is used for simulating the different application
sizes on the analysis performed by STeLLAR.

As demonstrated in this paper, the impact of choosing a
compiled or interpreted language runtime on the cold start
is tremendous. The work on [8] came with one hypnotizes
why Java functions have the worst initialization time of all
three language runtimes tested. They claim it is because Java
applications need more resource-intensive environments for
starting the JVM, which overcharges the already busy CPU.
This may explain why large Java functions performed badly
with the container-based deployment. The authors on [8] also
stated that this effect is smaller for higher memory settings.
Our work is additional to this analysis since we demonstrate
that medium-size Java applications when running with small
memory configurations may present a lower cold start time
when deployed as a container instead of a ZIP package.

V. CONCLUSION AND FUTURE WORK

Over the past five years, serverless computing has grown
exponentially in popularity, and it is now one of the most



used software architectures in the industry. However, not much
focus was given to the underlying problems this model brings
to light. The cold start problem is one of the biggest challenges
that comes when using serverless functions. Additionally, the
many choices around language runtime, memory configuration
and deployment types one can have for deploying their work-
loads on the cloud make this problem even more complex.
To address this issue, we presented the first extensive study
about the impacts caused by the language runtime, memory
allocation and function package size in the initialization time
of AWS Lambda when using the two deployment types
available, the ZIP deployment and the recently introduced
container-based deployment.

We proposed guidelines for Python, Node.js and Java server-
less functions under different memory configurations and
application sizes according to which deployment type presents
the best cold start performance. Developers can use these
insights to achieve lower initialization times when deploying
their applications on AWS Lambda by using application and
platform knowledge. In the future, we want to launch an
open-source benchmark framework to allow the automatic
performance characterization of workloads for AWS Lambda.

REFERENCES

[1] I. Cloud. (2021) Iaas vs. paas vs. saas. [Online]. Available:
https://www.ibm.com/cloud/learn/iaas-paas-saas

[2] G. Cloud. (2022) Cloud functions. [Online]. Available:
https://cloud.google.com/functions

[3] M. Azure. (2022) Azure functions. [Online]. Available:
https://azure.microsoft.com/en-us/services/functions/

[4] I. Cloud. (2022) Ibm cloud functions. [Online]. Available:
https://cloud.ibm.com/functions/

[5] A. W. Services. (2022) Aws lambda. [Online]. Available:
https://aws.amazon.com/lambda/

[6] ——. (2020) Aws lambda - container image support.
[Online]. Available: https://aws.amazon.com/blogs/aws/new-for-aws-
lambda-container-image-support

[7] ——. (2018) Become a serverless black belt - op-
timizing your serverless applications. [Online]. Avail-
able: https://pages.awscloud.com/Become-a-Serverless-Black-Belt—
Optimizing-Your-Serverless-Applications 0205-SR OD.html

[8] J. Manner, M. Endreß, T. Heckel, and G. Wirtz, “Cold start influencing
factors in function as a service,” in 2018 IEEE/ACM International Con-
ference on Utility and Cloud Computing Companion (UCC Companion),
2018, pp. 181–188.

[9] E. Oakes, L. Yang, K. Houck, T. Harter, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Pipsqueak: Lean lambdas with large libraries,”
in 2017 IEEE 37th International Conference on Distributed Computing
Systems Workshops (ICDCSW). IEEE, 2017, pp. 395–400.

[10] H. Puripunpinyo and M. Samadzadeh, “Effect of optimizing java deploy-
ment artifacts on aws lambda,” in 2017 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2017, pp.
438–443.

[11] I. Stancin and A. Jovic, “An overview and comparison of free python
libraries for data mining and big data analysis,” in 2019 42nd Inter-
national Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 2019, pp. 977–982.

[12] T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang,
C. Qin, and H. Chen, “Characterizing serverless platforms with
serverlessbench,” in Proceedings of the 11th ACM Symposium on
Cloud Computing, ser. SoCC ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 30–44. [Online]. Available:
https://doi.org/10.1145/3419111.3421280

[13] P. Vahidinia, B. Farahani, and F. S. Aliee, “Cold start in serverless com-
puting: Current trends and mitigation strategies,” in 2020 International
Conference on Omni-layer Intelligent Systems (COINS), 2020, pp. 1–7.

[14] R. Ribenzaft. (2019) What aws lambda’s performance stats
reveal. [Online]. Available: https://thenewstack.io/what-aws-lambdas-
performance-stats-reveal/

[15] Datadog. (2021) The state of serverless. [Online]. Available:
https://www.datadoghq.com/state-of-serverless/

[16] E. Şamdan. (2018) Dealing with cold starts in aws lambda. [Online].
Available: https://medium.com/thundra/dealing-with-cold-starts-in-aws-
lambda-a5e3aa8f532

[17] E. Samdan. (2017) A cloud guru news. [Online]. Avail-
able: https://acloudguru.com/blog/engineering/does-coding-language-
memory-or-package-size-affect-cold-starts-of-aws-lambda

[18] D. Ustiugov, T. Amariucai, and B. Grot, “Analyzing tail latency in
serverless clouds with stellar,” in 2021 IEEE International Symposium
on Workload Characterization (IISWC’21). United States: Institute of
Electrical and Electronics Engineers (IEEE), Sep. 2021, 2021 IEEE
International Symposium on Workload Characterization, IISWC 2021 ;
Conference date: 07-11-2021 Through 09-11-2021. [Online]. Available:
http://www.iiswc.org/iiswc2021/index.html

[19] S. Raschka and V. Mirjalili, “Python machine learning: Machine learning
and deep learning with python,” Scikit-Learn, and TensorFlow. Second
edition ed, 2017.

[20] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright et al.,
“Scipy 1.0: fundamental algorithms for scientific computing in python,”
Nature methods, vol. 17, no. 3, pp. 261–272, 2020.

[21] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt, “Sand: Towards high-performance serverless computing,” in
2018 Usenix Annual Technical Conference USENIX ATC 18), 2018, pp.
923–935.

[22] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and
H. Chen, Catalyzer: Sub-Millisecond Startup for Serverless Computing
with Initialization-Less Booting. New York, NY, USA: Association
for Computing Machinery, 2020, p. 467–481. [Online]. Available:
https://doi.org/10.1145/3373376.3378512

[23] K. Solaiman and M. A. Adnan, “Wlec: A not so cold architecture to
mitigate cold start problem in serverless computing,” in 2020 IEEE
International Conference on Cloud Engineering (IC2E), 2020, pp. 144–
153.

[24] W. Ling, L. Ma, C. Tian, and Z. Hu, “Pigeon: A dynamic and efficient
serverless and faas framework for private cloud,” in 2019 International
Conference on Computational Science and Computational Intelligence
(CSCI), 2019, pp. 1416–1421.

[25] D. Bermbach, A.-S. Karakaya, and S. Buchholz, Using Application
Knowledge to Reduce Cold Starts in FaaS Services. New York,
NY, USA: Association for Computing Machinery, 2020, p. 134–143.
[Online]. Available: https://doi.org/10.1145/3341105.3373909

[26] D. Kelly, F. G. Glavin, and E. Barrett, “Serverless computing: Behind
the scenes of major platforms,” 2020.

[27] A. Tariq, A. Pahl, S. Nimmagadda, E. Rozner, and S. Lanka, “Sequoia:
Enabling quality-of-service in serverless computing,” in Proceedings
of the 11th ACM Symposium on Cloud Computing, ser. SoCC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
311–327. [Online]. Available: https://doi.org/10.1145/3419111.3421306

[28] S. Horovitz, R. Amos, O. Baruch, T. Cohen, T. Oyar, and A. Deri,
FaaStest - Machine Learning Based Cost and Performance FaaS Op-
timization: 15th International Conference, GECON 2018, Pisa, Italy,
September 18–20, 2018, Proceedings, 01 2019, pp. 171–186.

[29] T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang,
C. Qin, and H. Chen, “Characterizing serverless platforms with
serverlessbench,” in Proceedings of the 11th ACM Symposium on
Cloud Computing, ser. SoCC ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 30–44. [Online]. Available:
https://doi.org/10.1145/3419111.3421280

[30] J. Jarachanthan, L. Chen, F. Xu, and B. Li, AMPS-Inf: Automatic
Model Partitioning for Serverless Inference with Cost Efficiency. New
York, NY, USA: Association for Computing Machinery, 2021. [Online].
Available: https://doi.org/10.1145/3472456.3472501

[31] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, and A. Iosup, “Serverless applications: Why,
when, and how?” IEEE Software, vol. 38, no. 1, pp. 32–39, 2021.


