
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/344638342

Modeling and Optimization of Performance and Cost of Serverless Applications

Article in IEEE Transactions on Parallel and Distributed Systems · October 2020

DOI: 10.1109/TPDS.2020.3028841

CITATIONS

0
READS

2

2 authors:

Some of the authors of this publication are also working on these related projects:

Expanded Artemis Cloud for Health Analytics as a Service View project

Smart Application on Virtual Infrastructure (SAVI) View project

Changyuan Lin

University of Alberta

5 PUBLICATIONS 3 CITATIONS

SEE PROFILE

Hamzeh Khazaei

York University

68 PUBLICATIONS 1,097 CITATIONS

SEE PROFILE

All content following this page was uploaded by Hamzeh Khazaei on 14 October 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/344638342_Modeling_and_Optimization_of_Performance_and_Cost_of_Serverless_Applications?enrichId=rgreq-e5b3f2d5e8a06dd594c14c03e8216bfc-XXX&enrichSource=Y292ZXJQYWdlOzM0NDYzODM0MjtBUzo5NDYzNDQzNDg4OTMxODRAMTYwMjYzNzQ4MzgzMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/344638342_Modeling_and_Optimization_of_Performance_and_Cost_of_Serverless_Applications?enrichId=rgreq-e5b3f2d5e8a06dd594c14c03e8216bfc-XXX&enrichSource=Y292ZXJQYWdlOzM0NDYzODM0MjtBUzo5NDYzNDQzNDg4OTMxODRAMTYwMjYzNzQ4MzgzMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Expanded-Artemis-Cloud-for-Health-Analytics-as-a-Service?enrichId=rgreq-e5b3f2d5e8a06dd594c14c03e8216bfc-XXX&enrichSource=Y292ZXJQYWdlOzM0NDYzODM0MjtBUzo5NDYzNDQzNDg4OTMxODRAMTYwMjYzNzQ4MzgzMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Smart-Application-on-Virtual-Infrastructure-SAVI?enrichId=rgreq-e5b3f2d5e8a06dd594c14c03e8216bfc-XXX&enrichSource=Y292ZXJQYWdlOzM0NDYzODM0MjtBUzo5NDYzNDQzNDg4OTMxODRAMTYwMjYzNzQ4MzgzMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e5b3f2d5e8a06dd594c14c03e8216bfc-XXX&enrichSource=Y292ZXJQYWdlOzM0NDYzODM0MjtBUzo5NDYzNDQzNDg4OTMxODRAMTYwMjYzNzQ4MzgzMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Changyuan_Lin?enrichId=rgreq-e5b3f2d5e8a06dd594c14c03e8216bfc-XXX&enrichSource=Y292ZXJQYWdlOzM0NDYzODM0MjtBUzo5NDYzNDQzNDg4OTMxODRAMTYwMjYzNzQ4MzgzMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Changyuan_Lin?enrichId=rgreq-e5b3f2d5e8a06dd594c14c03e8216bfc-XXX&enrichSource=Y292ZXJQYWdlOzM0NDYzODM0MjtBUzo5NDYzNDQzNDg4OTMxODRAMTYwMjYzNzQ4MzgzMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Alberta?enrichId=rgreq-e5b3f2d5e8a06dd594c14c03e8216bfc-XXX&enrichSource=Y292ZXJQYWdlOzM0NDYzODM0MjtBUzo5NDYzNDQzNDg4OTMxODRAMTYwMjYzNzQ4MzgzMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Changyuan_Lin?enrichId=rgreq-e5b3f2d5e8a06dd594c14c03e8216bfc-XXX&enrichSource=Y292ZXJQYWdlOzM0NDYzODM0MjtBUzo5NDYzNDQzNDg4OTMxODRAMTYwMjYzNzQ4MzgzMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hamzeh_Khazaei?enrichId=rgreq-e5b3f2d5e8a06dd594c14c03e8216bfc-XXX&enrichSource=Y292ZXJQYWdlOzM0NDYzODM0MjtBUzo5NDYzNDQzNDg4OTMxODRAMTYwMjYzNzQ4MzgzMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hamzeh_Khazaei?enrichId=rgreq-e5b3f2d5e8a06dd594c14c03e8216bfc-XXX&enrichSource=Y292ZXJQYWdlOzM0NDYzODM0MjtBUzo5NDYzNDQzNDg4OTMxODRAMTYwMjYzNzQ4MzgzMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/York_University?enrichId=rgreq-e5b3f2d5e8a06dd594c14c03e8216bfc-XXX&enrichSource=Y292ZXJQYWdlOzM0NDYzODM0MjtBUzo5NDYzNDQzNDg4OTMxODRAMTYwMjYzNzQ4MzgzMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hamzeh_Khazaei?enrichId=rgreq-e5b3f2d5e8a06dd594c14c03e8216bfc-XXX&enrichSource=Y292ZXJQYWdlOzM0NDYzODM0MjtBUzo5NDYzNDQzNDg4OTMxODRAMTYwMjYzNzQ4MzgzMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hamzeh_Khazaei?enrichId=rgreq-e5b3f2d5e8a06dd594c14c03e8216bfc-XXX&enrichSource=Y292ZXJQYWdlOzM0NDYzODM0MjtBUzo5NDYzNDQzNDg4OTMxODRAMTYwMjYzNzQ4MzgzMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

1

Modeling and Optimization of Performance and
Cost of Serverless Applications

Changyuan Lin, Student Member, IEEE, Hamzeh Khazaei, Member, IEEE,

Abstract—Function-as-a-Service (FaaS) and serverless applications have proliferated significantly in recent years because of their
high scalability, ease of resource management, and pay-as-you-go pricing model. However, cloud users are facing practical problems
when they migrate their applications to the serverless pattern, which are the lack of analytical performance and billing model and the
trade-off between limited budget and the desired quality of service of serverless applications. In this paper, we fill this gap by proposing
and answering two research questions regarding the prediction and optimization of performance and cost of serverless applications.
We propose a new construct to formally define a serverless application workflow, and then implement analytical models to predict the
average end-to-end response time and the cost of the workflow. Consequently, we propose a heuristic algorithm named Probability
Refined Critical Path Greedy algorithm (PRCP) with four greedy strategies to answer two fundamental optimization questions regarding
the performance and the cost. We extensively evaluate the proposed models by conducting experimentation on AWS Lambda and
Step Functions. Our analytical models can predict the performance and cost of serverless applications with more than 98% accuracy.
The PRCP algorithms can achieve the optimal configurations of serverless applications with 97% accuracy on average.

Index Terms—Cloud Serverless Computing; Performance Modeling; Performance Optimization; Cost Modeling; Cost Optimization;

F

1 INTRODUCTION

Cloud computing has drawn extensive attention from both
academia and industry over the past decade. A rapidly
increasing number of applications and services are shifted
to the cloud because of the high scalability, availability, pay-
as-you-go billing model, and low overhead on infrastruc-
ture management [1], [2]. Meantime, many cloud service
providers, such as Amazon Web Services (AWS), Google
Cloud Platform (GCP), and Microsoft Azure, have emerged
to offer diverse cloud services and infrastructures in the
cloud computing market. With the increased popularity in
containerization, service-oriented and event-driven archi-
tecture, there is also a growing trend in the paradigm of
cloud computing shifting from Infrastructure-as-a-Service
(IaaS) to Container-as-a-Service (CaaS) and Platform-as-a-
Service (PaaS), and then to Function-as-a-Service (FaaS) [3].
Based on lightweight virtualization solutions, specifically
containers, and container-orchestration systems, like Ku-
bernetes, many cloud providers have launched their FaaS
platforms, such as AWS Lambda, Google Cloud Functions,
and Azure Functions.

With the development of FaaS platforms and evolution
of the cloud computing paradigm, the serverless comput-
ing paradigm, in which the application is abstracted as a
group of functions hosted on FaaS platforms orchestrated
in a workflow has emerged. Serverless computing brings
another revolution to cloud computing by rendering the

• C. Lin is with the Department of Electrical and Computer Engineering,
University of Alberta, AB, Canada.
E-mail: changyua@ualberta.ca

• H. Khazaei is with the Department of Electrical Engineering and Com-
puter Science, York University, Toronto, ON, Canada.
E-mail: hkh@yorku.ca

Manuscript received September, 2020

management of underlying infrastructure unnecessary, as
FaaS platforms take over all the operational responsibilities
such as function deployment, resource management, scal-
ing, and monitoring. Developers can mainly focus on the
business logic of functions, thus expediting the application
development. The small-granularity billing and scaling in
FaaS platforms can also decrease the cost substantially [4],
[5].

Despite the fact that serverless solution is cost-effective
and eases the resource management, there are pain points
hindering its wide adoption by potential users, including
the lack of performance and cost model [6], [7], [8], and
the trade-off analysis between the performance and cost
of serverless applications [8], [9]. Performance and cost
modeling and optimization are non-trivial and necessary
steps towards guaranteeing the service level agreement
(SLA) of serverless applications in an economic manner,
which is basically finding an acceptable trade-off between
performance and cost. The difficulties of such modeling and
optimization problems lie in the following aspects:

1) FaaS platforms introduce a new GB-second billing
model depending on the memory size, function
duration, and the number of invocations.

2) The workflow, which represents the orchestration
of functions in serverless applications, can be very
complex in terms of the number of functions, di-
verse structures, and the number of configuration
combinations.

3) Classical methods used in the performance mod-
eling of parallel computing and traditional soft-
ware, such as Petri net and queuing theory, are
not suitable for the serverless application because
of its independently-operated, event-driven, closed-
source, and infrastructure-agnostic architecture.

2

Start End

End-to-end Response Time

Average Cost

Perf/Cost - Mem Curve of Functions

Function Payload

Function Source Code
AWS Lambda CloudWatch

Query

Leverage

Performance/Cost
- Memory Curve

Input

Performance and
Memory Configurations

of Functions
Performance and Cost

Modeling Algorithm

Perf. Modeling: Process Parallels,
Branches, Cycles and Self-loops

Cost Modeling: Remove Loops and
Get Average Number of Invocations

Input Satisfying Mem Configurations

Performance
Constriant

Budget
Constriant Performance and Cost

Optimization AlgorithmLeverage

Send
Invocation
Requests

App Workflow

Deploy
Input

Input

Best Performance Under Budget Constraint
Minimum Cost Under Performance Constraint

Probabilistic DAG

Delooped Graph

Input Models and Algorithms Output

Cloud
Provider

Calculate

Calculate

Logging

Fig. 1. Overview of the proposed approach for modeling and optimization of performance and cost of serverless applications. The three boxes from
left to right illustrate the input, performance and cost models and optimization algorithms, and the corresponding output. The cloud provider part can
be replaced with any FaaS platforms. We use AWS for experimental evaluation in this work. The proposed approach can accomplish three types of
tasks (depicted by three different colors): (i) Deploy user-provided function source code and payload to FaaS platform, invoke functions and query
the execution log, and give the performance-memory curve of functions as shown in Figure 2 as the output. (ii) Take the workflow orchestration of the
serverless application and memory configuration and performance (response time) of functions as inputs, process inputs using the performance
and cost models, and give the application end-to-end response time and the average cost under the given configuration as the output. (iii) For
user-defined performance and cost constraints of a workflow, leverage the proposed performance cost models and optimization algorithms with
the performance-memory curve of functions, and give the satisfying memory configuration that achieves the best performance under a budget
constraint or the minimum cost under a performance constraint as the output.

Such a significant gap leads us to the following research
questions:

• RQ1: Can we obtain the end-to-end response time
and cost of a serverless application when orchestra-
tion and configuration of the application are given?

• RQ2: Can we calculate the best performance under
a given budget or the minimum cost for a desired
performance for a serverless application?

To answer these research questions, we propose new an-
alytical models and a greedy algorithm with four strategies
to respectively model and optimize the performance and
cost of serverless applications. The overview of the pro-
posed approach is illustrated in Figure 1. We evaluated the
model and algorithm using serverless applications deployed
on AWS composed of three types of generic functions repre-
senting CPU, network, and disk intensive workloads, with
parallels, branches, cycles, and self-loops in their workflows.
As verified by the experimental evaluation, our analytical
model can precisely give the end-to-end response time of
serverless applications with over 98% accuracy, and estimate
the average cost with an accuracy of over 99%, independent
of the complexity of their workflows. The greedy algorithm
can effectively and efficiently resolve two types of optimiza-
tion problems specified in RQ2 with over 97% accuracy.

The main contributions of this paper are three-fold:
(1) We propose a formal definition of the serverless appli-
cation workflow to abstract sequence, parallelism, branch,
cycle, and loop in the workflow and new features intro-
duced by the serverless computing paradigm, such as the
GB-second billing model and the orchestration of FaaS
functions. (2) We propose, to the best of our knowledge,
the first analytical models to accurately get the average
end-to-end response time and cost of serverless applications
with parallels, branches, cycles, and self-loops in their work-

flows. (3) We present a heuristic algorithm for optimizing
performance and cost of serverless applications, which can
give the optimal configurations of functions achieving the
best performance for a given budget and the minimum
cost for satisfying a given performance. All our algorithms,
scripts, and experimental results are available in the artifact
repository1.

The rest of the paper is organized as follows: Section 2
briefly introduces the background including FaaS, serverless
application, and serverless workflow. Section 3 presents the
construction of the serverless workflow and performance
and cost models, namely answering the RQ1. In Section 4,
we propose performance and cost optimization problems in
RQ2 and the PRCP algorithm to answer them. Section 5,
presents the experimental evaluation of the aforementioned
models and algorithm. In Section 6, we survey the latest
related literature in the areas of performance modeling,
workflow scheduling, and serverless architecture. Section 7
discusses and concludes our work.

2 BACKGROUND

In this section, we give a brief introduction to FaaS, server-
less application, and serverless workflow.

2.1 FaaS

In the Function as a Service (FaaS) paradigm, the function
is a chunk of code that abstracts a part of an application im-
plementing business logic. The notion of function in FaaS is
similar to a function in functional programming or a method
in object-oriented programming, responsible for handling
one task required by the application statelessly. The source
code of the function and its dependencies are packaged

1. https://github.com/pacslab/SLApp-PerfCost-MdlOpt

3

500 1000 1500 2000 2500 3000
Allocated Memory in MB

1000

2000

3000

4000

5000

6000

7000

Fu
nc

tio
n

Du
ra

tio
n

in
 m

s

Function Duration

16

18

20

22

24

26

Co
st

 p
er

 1
 M

illi
on

 In
vo

ca
tio

ns
 in

 U
SDCost

Fig. 2. The cost and performance with regard to the amount of allo-
cated memory of a CPU-intensive function (hashing) deployed on AWS
Lambda. The blue line is the performance-memory curve of the function.

together, and the function is running in an ephemeral iso-
lated environment provided by lightweight virtualization
solutions such as Docker containers, Unikernels [10], or even
processes [11].

AWS launched a computing service called Lambda in
2014 [12], which could store, package, and deploy functions
uploaded by users, handle events and requests of func-
tions, monitor the resource usage, and autoscale function
containers correspondingly. This was the first time that the
function execution was offered as a cloud service, namely
FaaS. Today, besides AWS Lambda, many FaaS platforms
with similar functionalities are provided by public cloud
service providers and open-source communities such as
Google Cloud Functions, Azure Functions, and OpenFaaS.

As FaaS platforms take over operational responsibilities,
besides uploading the source code of functions, users have
limited control over resources on FaaS platforms. Taking
AWS Lambda as an example, the amount of allocated mem-
ory during execution and the concurrency level are only op-
tions for tuning the performance of functions. The amount
of allocated memory is between 128 MB and 3,008 MB
in 64MB increments [13]. Previous researches have proven
that computational power and network throughput are in
proportion to the amount of allocated memory, and disk
performance also increases with larger memory size due
to less contention [14], [15]. By reserving and provisioning
more instances to host functions, high concurrency level can
decrease fluctuations in the function performance incurred
by cold starts (container initialization provisioning delay if
no warm instance is available) and reduce the number of
throttles under very heavy request loads [16].

FaaS platforms also introduce a new GB-second billing
model depending on the allocated memory size, function
duration, and the number of invocations. For example, AWS
Lambda charges $0.000016667 for every GB-second and
$0.20 per 1M function invocations. The billed duration is
the function duration rounded up to the nearest 100ms and
metered at a granularity of 100ms [17]. Due to the rounding
and billing granularity, the cost fluctuates erratically as the
memory size changes, see our experiment results shown
in Figure 2. The new billing model and such irregularities
make the modeling and optimization problems non-trivial.

f1

f5r5
c5

f5
520ms
768MB

Start

End

P(fstr, f1) = 1

P(
f 1,

 f 2
) =

 1

P(f1 , f5) = 1
D(f1 , f5) = 16

P(f2, f3
) = 0.7

P(f2 , f4) = 0.3

D(f2, f3
) = 20

D(f2 , f4) = 20

P(f3 , f6) = 1
D(f3 , f6) = 2
P(f4, f6) = 1D(f4, f6) = 2

P(f 5,
f 6)

= 0.8

P(f6, f7) = 0.9

P(f6, f1) = 0.1

P(f5, f5) = 0.2 D(f5, f5) = 1

Image
Preprocessing

Feature
Extraction

Model 1

Reduce Size to
Generate

Thumbnails

Persist
Metadata

Model 2

if use M
1

if use M2

if invalid

if not small enough

f2
320ms

1024MB

if valid

D(f6, f7) = 60

f1
560ms
512MB

f7
430ms
256MB

f6
150ms
576MB

f3
260ms

1024MB

f4
840ms

2048MB

Validity
Check

D(f 5,
f 6)

= 40
D(fstr, f1) = 0

D(
f 1,

 f 2
) =

 9

P(f7, fend) = 1
D(f7, fend) = 0

if small

Start

Function Structural
Vertex

f4
840ms

2048MB

Condition Business
Logic

D(f6, f1) = 1

Fig. 3. Workflow of a serverless image classification application com-
posed of seven FaaS functions. The two numbers on each function
represent the response time and allocated memory, respectively. P and
D are the transition probability function and the delay function.

2.2 Serverless Application

The serverless application decouples its business logic into a
group of serverless functions hosted on FaaS platforms and
leverages necessary cloud services such as bucket storage,
message queue, and pub/sub messaging service to build a
stateless and event-driven software system [18], [19]. FaaS
platforms and those cloud services shift most operational
responsibilities to cloud service providers. Hence, the over-
head of server management, monitoring, failover, and scal-
ing is eliminated for serverless applications, like there are
no servers to manage at all, namely serverless.

To complete the business logic of the application, in-
teractions among decoupled functions are indispensable.
In most cases, a coordinator is required to chain together
components of the application, handle events among func-
tions, and trigger functions in the correct order defined by
the business logic. Typically, a message queue, a pub/sub
messaging service, an event bus, or a workflow coordinator
like AWS Step Functions Express Workflows act as such a
coordinator [6], [18], [20]. Figure 3 illustrates an example of
a serverless application composed of seven functions.

2.3 Serverless Workflow

In general, the serverless workflow is the orchestration of
functions in the serverless application to implement the
entire business logic. AWS defines that the serverless work-
flow describes a process as a series of individual functions
and coordinates them [21]. As shown in many examples of
serverless applications deployed in the production environ-
ment, there can be four types of structures in the server-
less workflow, including parallel, branch, cycle, and self-
loop [22], [23], [24]. Many research works have proven that
workflows based on the directed acyclic graph (DAG) and
Petri net are effective for performance and cost modeling
of systems in parallel, distributed, and scientific comput-
ing [25], [26], [27]. However, none of them are favorable for
the serverless paradigm, as cycles and loops are not allowed
in DAGs, and cause the state explosion problem without ef-
ficient solutions in Petri nets. The disadvantages of Petri nets
also lie in its high complexity and limited support of non-
functional requirements in cloud computing [28]. Hence,
performance and cost modeling of serverless applications
requires a loose and concise definition of the serverless

4

workflow, which adapts to new features of the serverless
computing paradigm.

3 PERFORMANCE AND COST MODELING

In this section, we first construct the serverless workflow
of a serverless application, and then propose two analytical
models to predict the performance and cost, i.e., answering
the RQ1.

3.1 Definition of the serverless workflow

The serverless workflow of a serverless application Gs is
defined as a weighted directed graph:

Gs = (V,E, P,D,RT,RTTP,M,NI,C) (1)

where

– V is a finite set of |V | vertices {f1, f2, ..., fn}, such
that n = |V |, representing FaaS functions, integrated
cloud services, or structural vertices;

– E ⊆ V × V is a finite set of directed edges. The
directed edge from fu∈V to fv∈V , denoted as ei =
(fu, fv), represents the interaction between vertex fu
and fv defined by the business logic;

– P : V × V → [0, 1] is a transition probability func-
tion. P (fu, fv) identifies the probability of invoking
fv after finishing the execution of fu. A transition
probability of 0 represents the corresponding edge
does not exist;

– D : V × V → [0,+∞) is a delay function. D (fu, fv)
identifies the delay from fu to fv incurred by the
interaction/coordination method;

– RT : V → [0,+∞) is the response time of a function.
RT (fu) is the response time of function fu;

– RTTP : V → ℘ ([0,+∞)× [0, 1]) is a function repre-
senting all possible values of the response time and
corresponding probability of interim B-nodes, which
are defined in Section 3.3.1 to process branches.
RTTP (f) , ∅ for any f which is not a B-node;

– M : V → N is a memory function. M (fu) is the size
of the allocated memory of function fu;

– NI : V → [0,+∞) is a function representing the
average number of invocations of each function in
V , per execution of the serverless workflow Gs;

– C : V → [0,+∞) is a cost function. C (fu) is the cost
per invocation of function fu;

Besides FaaS functions, vertices can also represent other
cloud services, such as a MapReduce service or a database
operation service. As those services are similar to functions
in terms of the execution, we collectively call them func-
tions for brevity. V can also contain several non-functional
structural vertices that facilitate developing the workflow
and do not incur any delay and cost, such as start node
and end node. Typically, the execution of the serverless
workflow starts with a particular function as a trigger, and
then the following functions will be invoked to complete
the business logic [29]. Therefore, we include a start node
fstr and an end node fend in V defining the entry point and
the endpoint of the workflow, respectively. Figure 3 shows
an example of a serverless workflow for image classification.

Based on the definition of the serverless workflow, we define
the following notations:

1) A simple path in the serverless workflow is a fi-
nite sequence of distinct vertices and edges s =
f1e1f2e2...en−1fn such that (i) fi ∈ V for all in-
tegers 1 ≤ i ≤ n, (ii) ei ∈ E for all integers
1 ≤ i ≤ n−1, and (iii) ei = (fi, fi+1) for all integers
1 ≤ i ≤ n− 1.

2) The transition probability of the simple path s =
f1e1f2e2...en−1fn is defined as Equation (2).

TPP (s) =
n−1∏
i=1

P (fi, fi+1) (2)

3) The delay (response time) of a simple path s =
f1e1f2e2...en−1fn, denoted as DLY (s), is defined
as Equation (3), namely the sum of the response
time of functions and the delay incurred by edges in
this path. In particular, we use DLY −(s) to denote
the delay of a simple path without considering the
response time of the first and last vertices in the
simple path, defined as Equation (4).

DLY (s) =
n∑
i=1

RT (fi) +
n−1∑
i=1

D (fi, fi+1) (3)

DLY − (s) =
n−1∑
i=2

RT (fi) +
n−1∑
i=1

D (fi, fi+1) (4)

4) ASP (fu, fv) denotes all simple paths between ver-
tex fu and fv , which is the set of all possible simple
paths in the workflow graph, starting from fu and
ending at fv , with fu and fv included.

5) The shortest path length between two vertices fu
and fv , denoted as SPL(fu, fv), is specified as the
length of the shortest simple path from fu to fv . The
length of a simple path is the number of edges in it.

6) SUB(fu, fv) denotes the subgraph between fu ∈ V
and fv ∈ V , which is derived from Gs by re-
moving all vertices and edges not in any paths in
ASP (fu, fv).

7) out (fu) denotes the set of all edges starting from
vertex fu, defined as the following.

out (fu) = {e ∈ E : e = (fu, f) for some f ∈ V }

For convenience, Table 1 includes the definitions of no-
tations and parameters used in the performance and cost
models as well as optimization algorithms.

3.2 Structures in the serverless workflow
In this section, we define four types of structures in the
serverless workflow, namely parallel, branch, cycle, and self-
loop, as shown in Figure 4.

3.2.1 Parallel
Let us consider all simple paths between vertices fu ∈ V
and fv ∈ V . If there is more than one simple path whose
transition probability is 1, we define the subgraph composed
of all simple paths with the transition probability of 1 as a
parallel structure.

5

TABLE 1
Definition of Notations used in models and algorithms

Notation Definition

Gs
the serverless workflow (eq. (1))
Gs = (V,E, P,D,RT,RTTP,M,NI,C)

f a FaaS function, cloud service, or structural vertex
e = (fu, fv) a directed edge from fu to fv
s a simple path
TPP (s) transition probability of a simple path s
DLY (s) delay of a simple path s
ASP (fu, fv) the set of all simple paths between fu and fv
SPL(fu, fv) the shortest length of simple paths between fu and fv
SUB(fu, fv) the subgraph between fu and fv
out(fu) the set of all edges starting from fu
ERT (G) the end-to-end response time of the workflow G

℘ power set
] disjoint union
⇓ restriction of a function
7→ map an element in the function domain
|A| the cardinal number of a set
Gp a parallel structure
Gb a branch structure
Gc a cycle structure
Gl a self-loop structure
Gpr probabilistic DAG used in the performance model
Gdl de-looped graph (DAG) used in the cost model
Gperf the graph used in the performance model (eq. (5))
Gcost the graph used in the cost model (eq. (12))
SRT (G) the RT of a parallel/branch/cycle/self-loop
EI(G) the expected number of iterations of a cycle/self-loop
DI(G) the delay incurred by iterations of a cycle/self-loop
fB a B-node used in procedures of processing branches
fP a P-node used in procedures of processing parallels
PGC price per GB-second of FaaS functions
PI price per invocation of FaaS functions
W (s) weight of a simple path s
BCR Benefit-cost ratio
TH BCR threshold
β(fu) the slope of the performance-memory curve of fu

Namely, we define the subgraph Gp = (Vp, Ep) as a
parallel structure, such that |SPp| > 1, where

Vp = {f ∈ V : f is in s for some s ∈ SPp}

Ep = {e ∈ E : e is in s for some s ∈ SPp}

SPp = {s ∈ ASP (fu, fv) : TPP (s) = 1}

As the parallel shown in Figure 4, the vertices and edges
of the parallel structure are depicted in blue color. There
are two simple paths with the transition probability of 1
between f1 and f4, namely f1e1f2e3f4 and f1e2f3e4f4.
Functions f2 and f3 are processed in parallel, indicating that
f1 leverages interactions to invoke f2 and f3 at the same
time after finishing its execution, and f4 starts execution
only after both f2 and f3 are completed.

3.2.2 Branch
Let us consider all simple paths between vertices fu ∈ V
and fv ∈ V . If there is more than one simple path whose
transition probability is less than 1, but can sum up to 1

f1
f3

f4
e 1

f2

f3

Branch
f2

f1

f1

f1f2 f2f3

f4

Condition 1

Condition 2

Condition 1

Condition 2

Condition 2

Conditio
n 1

e2 e 4

e3P(f 1,f 2
)= 1

P(f1, f3)= 1 P(f 3,f 4
)= 1

P(f2, f4)= 1
e 1 e3
e2 e 4

P(f 1,f 2
)= 0.6

P(f1, f3)= 0.4

P(f2, f4)= 1

P(f 3,f 4
)= 1

P(f1,f2)= 1

P(f2,f1)= 0.2

P(f2,f3)= 0.8

e1

e2
e3

P(f1,f2)= 0.9

P(f1,f1)= 0.1

e1

e2

Parallel

Cycle Self-loop

Fig. 4. Four types of structures in the serverless workflow.

in total, we define the subgraph composed of those simple
paths with the transition probability not equal to 1 as a
branch structure.

Namely, we define the subgraph Gb = (Vb, Eb) as a
branch structure, such that |SPb| > 1, where

Vb = {f ∈ V : f is in s for some s ∈ SPb}
Eb = {e ∈ E : e is in s for some s ∈ SPb}
SPb = {s ∈ ASP (fu, fv) : TPP (s) 6= 1}∑

s∈SPb

TPP (s) = 1

As the branch shown in Figure 4, the vertices and edges
of the parallel structure are depicted in green color. There
are two simple paths between f1 and f4 whose transition
probabilities are not equal to 1, but can add up to 1.
Hence, vertices and edges in simple paths f1e1f2e3f4 and
f1e2f3e4f4 form a branch structure. After completing f1,
the workflow continues with only one path in the branch,
depending on the satisfied condition.

3.2.3 Cycle
Considering all simple paths between vertices fu ∈ V and
fv ∈ V , we define the subgraph Gc = (Vc, Ec) as a cycle
structure between vertices fu and fv , where

Vc = {f ∈ V : f is in s for some s ∈ ASP (fu, fv)}
Ec = {e ∈ E : e is in s for some s ∈ ASP (fu, fv)}]{(fv, fu)}
such that

– 0 < P (fv, fu) < 1, invoking fu again after complet-
ing fv is a possible event;

–
∑

s∈ASP (fu,fv)

TPP (s) = 1, transition probabilities of

all simple paths between fu and fv sum up to 1;
– SUB(fu, fv) is a DAG, the subgraph between fu and

fv does not have any loops and cycles;
– SPL (fstr, fu) < SPL(fstr, fv), compared to fv , fu

is closer to the entry point;
–

∑
(fv,fi)∈out(fv)

P (fv, fi) = 1, the transition probabili-

ties of all edges starting from fv add up to 1.

As the cycle shown in Figure 4, vertices f1 and f2 and
edges e1 and e2 form a cycle, depicted in orange color.
After completing f2, depending on the satisfied condition,
the workflow will either invoke f3, or enter the cycle by
invoking f1.

6

3.2.4 Self-loop
A self-loop is a special case of cycle with only one vertex and
one edge. Considering a function fu connected by an edge
(fu, fu) to itself, we define the subgraph Gl = (Vl, El) =
({fu}, {(fu, fu)}) as a self-loop structure, such that

– 0 < P (fu, fu) < 1, invoking fu again after complet-
ing fu is a possible event;

–
∑

(fu,fi)∈out(fv)
P (fu, fi) = 1, the transition probabili-

ties of all edges starting from fu add up to 1.

As the self-loop depicted in red color shown in Figure 4,
after accomplishing f1, the workflow will either invoke f2,
or enter the self-loop by invoking f1 again.

3.3 Performance Modeling
We propose a performance model to get the end-to-end
response time of the serverless workflow. As M , NI , and C
defined inGs are relevant to cost instead of performance, we
do not consider them in the performance model for brevity.
Specifically, we only consider the following graph with part
of elements in Gs, defined as

Gperf = (V,E, P,D,RT,RTTP) (5)

With different methods for different structures, the per-
formance model trims the graph of Gperf by removing,
adding, and modifying vertices, edges and elements, and
converts Gperf into a probabilistic DAG, denoted as Gpr .
We define the probabilistic DAG as

Gpr = (V,E, P,D,RT,RTTP) (6)

such that

– Gpr is a DAG without any cycles and loops;
–

∑
s∈ASP (fstr,fend)

TPP (s) = 1, the transition probabil-

ities of all simple paths between the start node and
the end node in Gpr can sum up to 1.

The end-to-end response time of the serverless workflow
Gperf , denoted as ERT (Gperf), is defined as Equation (7).

ERT (Gperf) =
∑

s∈ASP (fstr,fend)

TPP (s)DLY (s) (7)

where ASP (fstr, fend) is the set of all simple paths be-
tween the start node and end node in Gpr , which is the
probabilistic DAG converted from Gperf by the proposed
performance model.

To convert a serverless workflow into a probabilistic
DAG, the model needs to remove cycles and self-loops
from the workflow and trim parallel paths. In the following
subsections, we describe how the performance model pro-
cesses four types of structures in the serverless workflow
and converts the workflow graph into a probabilistic DAG.

3.3.1 Process branches
The workflow selects only one path in the branch depending
on the satisfied condition. Each condition has a probability
specified by the transition probability function. The main
idea of processing the branch is to simplify the workflow
by replacing branch paths with an interim B-node while

retaining the information, including response time and the
probability of each branch path.

Consider a branch Gb = (Vb, Eb) between vertices fu
and fv , let SRT denote the response time of a structure,
we can obtain the branch structure’s expected value of the
response time by Equation (8).

SRT (Gb) =
∑

s∈ASP (fu,fv)

TPP (s)DLY (s) (8)

After calculating the expected value of the delay, the
performance model trims Gs by first removing all vertices
in Vb except fu and fv from V , namely we get a smaller set
of vertices, denoted as V ∗, defined as

V ∗ = V \ (Vb\ {fu, fv})

Correspondingly, we remove all elements relevant to re-
moved vertices by restricting functions as follows:

E
∗

= E ⇓ V ∗, P
∗

= P ⇓ V ∗, D
∗

= D ⇓ V ∗

RT
∗

= RT ⇓ V ∗, RTTP
∗

= RTTP ⇓ V ∗

Then, we add an interim vertex called “B-node”, denoted as
fB , to V , and connect fu, fB , and fv in sequence by adding
two edges (fu, fB) and (fB , fv) to E. We extend functions
in the graph tuple as follows:

V ′ = V ∗] {fB} , E′ = E
∗
] {(fu, fB) , (fB , fv)}

P ′ = P ∗ [(fu, fB) 7→ 1, (fu, fB) 7→ 1]

D′ = D∗ [(fu, fB) 7→ 0, (fu, fB) 7→ 0]

RT ′ = RT ∗ [fB 7→ SRT (Gb)−RT (fu)−RT (fv)]

The above procedures simplify the workflow graph, as
multiple vertices in the branch are replaced by an interim
B-node, whose response time is the weighted average re-
sponse time of branch paths. However, simply using the
weighted average value would compromise the accuracy of
the performance model. An example is when a branch is in
parallel to other paths, as shown in Figure 5. Therefore, we
retain the information, including response time and proba-
bility of each branch path using RTTP for later processing.

Specifically, we define RTTP as a function RTTP :
V → ℘ ([0,+∞)× [0, 1]), which represents all possible
values of the response time and corresponding probability
of all original paths replaced by interim B-nodes. When
processing branches and adding B-nodes, we have

RTTP ′ = RTTP ∗ [fB 7→ B]

where

B =
{(

DLY
−

(s) ,TPP (s)
)
|∀s ∈ ASP (fu, fv)

}
After processing branches, the workflow graph is up-

dated as Gperf ← G′ = (V ′, E′, P ′, D′, RT ′, RTTP ′).

3.3.2 Process parallels
For a given parallel structure Gp = (Vp, Ep) between ver-
tices fu and fv , the workflow executes all parallel paths
after completing fu and invokes fv only after finishing the
executions of all paths. Hence, as shown in Equation (9), the
response time of a parallel structure is the longest delay of
parallel paths in it. Therefore, the main idea of processing

7

Start End
1 10.9 430ms

256MB

f7
560ms
512MB

f1
150ms
256MB

f6RTTPB2=
{(1160,0.3),
(650,0.7)}

B2
11

0.1 Cycle

Start End
1 1430ms

256MB

f7RTTPB2=
{(1160,0.3),
(650,0.7)}

B2
11560ms

512MB

f1
318.11ms

f6 1

6. after processing the cycle

a probabilistic DAGperformance modeling alg. completed
end-to-end response time: 2111.11 ms

1
f5r5

c5
650ms
1024MB

f5
Start End

1

1

1

0.1 1560ms
512MB

f1 0.9150ms
256MB

f6
430ms
256MB

f7

320ms
768MB

f2 RTTPB1=
{(260,0.7),
(840,0.3)}

B1
1

1

Parallel

3. after processing the branch

Start End1
0.3

0.7 1

0.1 10.9

1

560ms
512MB

f1
150ms
256MB

f6
1160ms

P1

650ms

P2

430ms
256MB

f7

Branch

Start End
1

1

1

0.7

1

1

1

0.90.1 0.1
1

320ms
768MB

f2

f3
260ms
640MB

840ms
2048MB

f40.3

560ms
512MB

f1
150ms
256MB

f6

f5r5
c5
650ms
1024MB

f5

430ms
256MB

f7

Branch

Start End
1

1
1

0.7

1

1

0.8

0.90.1 0.1
1

0.2

320ms
768MB

f2

f3
260ms
640MB

840ms
2048MB

f40.3

560ms
512MB

f1
150ms
256MB

f6

f5r5
c5
520ms
1024MB

f5

430ms
256MB

f7

1. initial workflow graph

Self-loop

2. after processing the self-loop

4. after processing the parallel

5. after processing the branch

Fig. 5. Steps of the performance modeling algorithm solving the end-to-end response time of the serverless application shown in Figure 3. The
interim B-node and P-node (B1, B2, P1, and P2) are depicted in bold. The value of RTTP of the B-node retains the response time and probability
of each path in the branch. The number on each edge represents the transition probability, and the transition delay is considered as zero for brevity.

the parallel is to retain the parallel path with the longest
delay and prune other paths.

SRT (Gp) = max {DLY (s) |∀s ∈ ASP (fu, fv)} (9)

For a parallel structure without any interim B-nodes in
any paths, the delay of each path is deterministic. We can
directly use Equation (9) to get the delay of the parallel
structure, which is also deterministic. However, if there are
B-nodes in any paths, the delay of the parallel structure
may have a probability distribution instead of being a fixed
value. Since the response time of the B-node, recorded
by RTTP , varies based on probabilities under different
conditions, the delay of the path with B-nodes is subject to
a probability distribution, making the delay of the parallel
structure probabilistic. In this case, the performance model
leverages Algorithm 1 to get a set of tuples, denoted as
RTTP List, which has all possible values of response time
and corresponding probabilities of the parallel structure.

After calculating the delay using Equation (9) or deriving
RTTP List, similar to the trimming step in Section 3.3.1,
the performance model removes all vertices in Vp except fu
and fv from V, and then restricts functions. We have

V ∗ = V \ (Vp\ {fu, fv})
E∗ = E ⇓ V ∗, P ∗ = P ⇓ V ∗, D∗ = D ⇓ V ∗
RT ∗ = RT ⇓ V ∗, RTTP ∗ = RTTP ⇓ V ∗

Then, we add the interim vertex called ”P-node” to V. If
the parallel structure does not have any B-nodes, we only
add one P-node, denoted as fP and let

V ′ = V ∗] {fP } , E′ = E∗] {(fu, fP) , (fP , fv)}
P ′ = P ∗ [(fu, fP) 7→ 1, (fP , fv) 7→ 1]
D′ = D∗ [(fu, fP) 7→ 0, (fP , fv) 7→ 0]
RT ′ = RT ∗ [fP 7→ SRT (Gp)−RT (fu)−RT (fv)]

If Vp contains B-nodes, by using Algorithm 1, we
have RTTP List = {(rt1, pr1) , (rt2, pr2) , ..., (rtM , prM)},
which has M tuples of the response time and probability.
Then, M P-nodes will be added as follows:

V ′ = V ∗]Mi=1 {fPi} , E′ = E∗]Mi=1 {(fu, fPi) , (fPi , fv)}
for all 1 ≤ i ≤M :
P ′ = P ∗ [(fu, fpi) 7→ pri, (fpi , fv) 7→ 1]

D′ = D∗ [(fu, fpi) 7→ 0, (fpi , fv) 7→ 0]

RT ′ = RT ∗ [fpi 7→ tpi]

After processing paralles, the workflow graph is updated
as Gperf ← G′ = (V ′, E′, P ′, D′, RT ′, RTTP ′).

3.3.3 Process cycles
For processing cycles, the main idea is to remove the cy-
cle and add the delay incurred by cycle iterations to the
last vertex’s response time in the cycle. For a given cycle
Gc = (Vc, Ec) between vertices fu and fv , the expected
value of the number of cycle Gc iterations, denoted as
EI (Gc), namely the average number of times the workflow
enters the cycle after completing fv , can be expressed as
Equation (10).

EI (Gc) =
∞∑
n=1

[1− P (fv, fu)] [P (fv, fu)]
n−1

(n− 1)

=
P (fv, fu)

1− P (fv, fu)
(10)

By multiplying the expected number of cycle iterations
and the time required for each iteration, we can calculate the
expected delay incurred by cycle iterations.

DI (Gc) =

 ∑
s∈ASP (fu,fv)

TPP (s)DLY (s) +D (fv , fu)

EI (Gc)

8

Algorithm 1: Get RTTP List

Input: a parallel Gp = (Vp, Ep) between fu ∈ Vp and
fv ∈ Vp with n paths

Output: a set of tuples RTTP List which has all
possible values of response time and
corresponding probability of GP

1 for path si ∈ ASP (fu, fv) do
2 RTTP Listi ← []; . results list

3 if si has m ≥ 1 B-nodes {fB1 , fB2 , ..., fBm} then

4 RT wo B← DLY − (si)−
m∑
k=1

RT (fBk)

. the delay of the path without B-nodes

5 cmb← RTTP (fB1)× ...×RTTP (fBm);
. all combinations of the RT and prob. of all

B-nodes by the Cartesian product

6 for each combo Cj in cmb do
7 RTCj ←

∑
(rtk,tpk)∈Cj

rtk +RT wo B;

. a possible response time of si

8 TPCj ←
∏

(rtk,tpk)∈Cj
tpk;

. the corresponding probability

9 append (RTCj , TPCj) to RTTP Listi;
10 end
11 else . the path that does not have any B-nodes

12 RTC ← RT (si)− rx − ry ; . RT is

deterministic

13 append (RTC, 1) to RTTP Listi; . prob. is 1

14 end
15 end
16 rttp comb← RTTP List1 × ...×RTTP Listn;
17 RTTP List← [];
18 for each combo Cj in rttp comb do
19 RTCj ← max {rtk|∀ (rtk, tpk) ∈ Cj}; . a possible

RT of Gp, use maximum value due to parallelism

20 TPCj ←
∏

(rtk,tpk)∈Cj
tpk; . the corresponding prob.

21 append (RTCj , TPCj) to RTTP List;
22 end
23 return RTTP List

In terms of the response time of the cycle structure, the
delay incurred by cycle iterations is equivalent to increasing
the response time of fv by the same amount of time. There-
fore, the performance model first removes the edge (fv, fu)
as

E′ = E\ {(fv, fu)}

Then, the model modifies the transition probability, edge
delay, and vertex response time as follows:

P ∗ = P

[
e 7→ P (e)

1− P (fv, fu)

]
, for all e ∈ out(fv)

D′ = D [(fv, fu) 7→ 0] , P ′ = P ∗ [(fv, fu) 7→ 0]

RT ′ = RT [fv 7→ RT (fv) +DI (Gc)]

After processing cycles, the workflow graph is updated as
Gperf ← G′ = (V,E′, P ′, D′, RT ′, RTTP).

3.3.4 Process self-loops
The procedure to process self-loops is similar to that used to
process cycles. Given a self-loop Gl = ({fu}, {(fu, fu)}),
similarly using Equation (10), we can calculate the ex-
pected number of self-loop iterations as EI (Gl) =
P (fu,fu)

1−P (fu,fu)
, and the delay incurred by self-loop iterations

as DI (Gl) = EI (Gl) (RT (fu) +D (fu, fu)). Then, the
performance model updates the graph as Gperf ← G′ =
(V,E′, P ′, D′, RT ′, RTTP), where

P ∗ = P

[
e 7→ P (e)

1− P (fu, fu)

]
, for all e ∈ out(fu)

D′ = D [(fu, fu) 7→ 0] , P ′ = P ∗ [(fu, fu) 7→ 0]

E′ = E\ {(fu, fu)}
RT ′ = RT [fu 7→ RT (fu) +DI (Gl)] (11)

3.4 Cost Modeling

In this section, we introduce a cost model to get the average
cost of the serverless workflow. Since FaaS platforms lever-
age a GB-second billing model depending on the allocated
memory size, rounded-up function duration, and the num-
ber of invocations, we consider the following graph with
part of elements in Gs, defined as

Gcos t = (V,E, P,RT,M,NI,C) (12)

Algorithm 2: Performance modeling algorithm

Input: a serverless workflow Gs = (Vs, Es)
Output: the average end-to-end response time of the

serverless application
1 G′ ← Gs;
2 while G′ is not a probabilistic DAG (using eq. (6)) do
3 loop list← find self loops(G′); . section 3.2.4

4 for each self-loop Gi in loop list do
5 Process self-loop Gi; . Section 3.3.4

6 end
7 cycle list← find cycles(G′); . section 3.2.3

8 for each cycle Gi in self loop list do
9 Process cycle Gi; . Section 3.3.3

10 end
11 parallel list← find parallels(G′); . section 3.2.1

12 for each parallel Gi in parallel list do
13 Process parallel Gi; . Section 3.3.2

14 end
15 branch list← find branches(G′); . section 3.2.2

16 for each branch Gi = (Vi, Ei) in branch list do
17 Process branch Gi; . Section 3.3.1

18 end
19 end
20 ERT ←

∑
s∈ASPG′ (fstr,fend)

TPP (s) ·DLY (s); . eq. (7)

21 return ERT

All vertices representing FaaS functions have an amount
of allocated memory, identified by M . The allocated mem-
ory of 0 represents such vertex might be a structural node
without any cost, like start and end nodes, or other cloud
services to which the GB-second billing model is not ap-
plicable. The rounded-up function duration can be directly
calculated using the response time of each function defined
by RT . For a FaaS function fu ∈ V , its average cost, per
application execution, can be calculated as Equation (13),
where PGS is the price per GB-second and PPI is the price
per invocation (the cost of handling the invocation request).
For vertices representing cloud services with other pricing
models, the model obtains their cost from users’ input.

C (fu) = NI (fu)

(⌈
RT (fu)

100

⌉
·M (fu) · PGS + PPI

)
(13)

9

Each vertex fu ∈ V has an average number of invoca-
tions, denoted as NI(fu), which depends on the structure
of the serverless workflow. Branches can reduce the number
of invocations of vertices in them, since the transition prob-
ability of paths in branches is less than 1. Conversely, cycles
and self-loops can lead to more than once invocation of
functions in them, and the number of invocations depends
on the expected value of the number of cycle/self-loop
iterations, calculated as Equation (10). Hence, for a given
cycle Gc = (Vc, Ec) between vertices fu and fv , we have
the expected value of the number of invocations of each
vertex fi ∈ Vc as

NI (fi) = 1 + EI(Gc) =
1

1− P (fv, fu)
,∀fi ∈ Vc (14)

Similarly, for a self-loop Gl = ({fu}, {(fu, fu)}), we have

NI (fu) = 1 + EI(Gl) =
1

1− P (fu, fu)
(15)

The cost model first leverages Equation (14) and Equa-
tion (15) to calculate the average number of invocations
of vertices in cycles and self-loops. Then, similar to proce-
dures of processing cycles and self-loops in the performance
model, the cost model updates the edge and transition
probability to remove cycles and self-loops from the graph.
After removing all cycles and self-loops, considering the
impact of parallels and branches, the cost model updatesNI
of each vertex based on the sum of transition probabilities of
all simple paths from the start node to it. By following these
steps, we convert Gcost into a de-looped graph used for cost
modeling, denoted as Gdl. The average cost of the serverless
workflow can be calculated by

∑
f∈V

C (f). Algorithm 3 gives

the pseudo-code of the cost model.

3.5 Summary, Example, and Analysis
The implementation of the performance model is presented
in Algorithm 2. Based on definitions of structures in the
serverless workflow, as mentioned in Section 3.1, the algo-
rithm identifies structures in the workflow and leverages
different procedures to process structures, defined in Sec-
tion 3.3, to trim the workflow graph to a probabilistic DAG
and obtain the end-to-end response time of the application.
Figure 5 illustrates the step-by-step changes of the workflow
graph when the performance model works on the server-
less workflow shown in Figure 3. The average end-to-end
response time of the application is 2111.11ms.

Algorithm 3 describes the implementation of the cost
model. Taking the serverless workflow showing in Figure 3
as an example, after completing the first while loop, the
algorithm trims the workflow to a de-looped graph shown
in Figure 6. Then, in the for loop, the algorithm updates the
average number of invocations for each function again and
calculates the cost of the applications. The average cost of
the application is $41.82 per 1 million executions.

Let us consider the worst case scenario and analyze
the time complexities of the performance and cost models.
Under the definition of the serverless workflow mentioned
in 3.1, the most complex workflow is composed of as
many cycles and self-loops as possible, since the cycle and
self-loop structures require the least number of vertices,

Start 1

1

1

0.7

1

1

1

1 1

f3
260ms
640MB
0.778

840ms
2048MB

f4
840ms
2048MB
0.333

0.3

430ms
256MB

f7
430ms
256MB
1.111

f1
560ms
512MB
1.111

f2
320ms
768MB
1.111

f5
520ms
1024MB
1.389

f6
150ms
256MB
1.111

End

Fig. 6. The de-looped workflow of the serverless application shown in
Figure 3. The three numbers on each function represent the response
time, allocated memory and average number of invocations, respec-
tively. The number on each edge represents the transition probability.

Algorithm 3: Cost modeling algorithm
Input: a workflow graph Gcost
Output: the average cost for each execution of the

serverless application
1 G′ ← Gcost;
2 for all f ∈ V , let NI(f)← 1; . initialization

3 while G′ is not a DAG do
4 loop list← find self loops(G′); . section 3.2.4

5 for self-loop Gl = (fu, (fu, fu)) in loop list do
6 NI(fu)← 1

1−P (fu,fu)
; . eq. (15)

7 E ← E\ {(fu, fu)}; . remove the loop edge

8 for each edge e in out(fu) do
9 P ← P

[
e 7→ P (e)

1−P (fu,fu)

]
; . updat prob.

10 end
11 end
12 cycle list← find cycles(G′);
13 for each cycle Gi = (Vi, Ei) in cycle list do
14 For each f ∈ Vi update NI(f) using eq. (14);
15 Remove the cycle edge;
16 Update transition probabilities of outgoing

edges; . similar to steps for self-loops

17 end
18 end
19 for each vertex f ∈ V do
20 tp sum←

∑
s∈ASPG′ (fstr,f)

TPP (s) ;

21 if tp sum < 1 then
22 NI(f)← NI(f) · tp sum;
23 end
24 cost sum← cost sum+ C(f); . eq. (13)

25 end
26 return cost sum

compared to the parallel and branch structures. Figure 7
illustrates the workflow under the worst case scenario,
where the workflow is composed of n functions, (n + 2)

vertices, n(n+3)+2
2 edges, n(n−1)

2 cycles, and n self-loops.
The time complexities for detecting self-loops and cycles
are O(|E|) and O(C(|V | + |E|)), respectively, where C is
the number of cycles. The performance model and cost
model can process cycles and self-loops in O(n2) and
O(n) time, respectively. Hence, the time complexities for
the performance and cost modeling under the worst case
scenario are O(n6) and O(n5), respectively, where n is
the number of functions in the workflow. We empirically
analyze the AWS and Azure official repositories [30], [31].
The average number of functions in serverless applications
in this repository, orchestrated by Amazon Step Functions
or Microsoft Azure Functions, is less than 5. We do not find

10

f1 f2 f3 fn-1 fnfi... ...

...

......

End

Start

Fig. 7. The workflow of the worst case, which contains n functions, (n+

2) vertices, n(n+3)+2
2

edges, n(n−1)
2

cycles, and n self-loops.

any serverless application in the repositories resembling the
worst case topology. The most common typologies appear
to be sequential, paralleled, and branched. Our proposed
models can calculate the performance and cost of a worst-
case topology application with 27 functions and 406 edges
in less than a second on a laptop with a 2.70GHz Intel Core
i7-3740QM processor and 16 GB of memory. This shows the
applicability of the models for now and a foreseeable future.

4 PERFORMANCE AND COST OPTIMIZATION

As mentioned in Section 2, the response time of the function
varies with the allocated memory, and so does the cost.
Therefore, developers can tune the performance and cost of
the serverless application by changing the allocated memory
size of functions in the application. More specifically, as
described by RQ2, very practical problems in serverless
computing are to get the best performance under a lim-
ited budget or satisfy the performance constraint by the
minimum cost. RQ2 leads to two performance and cost
optimization problems. To answer them, we introduce the
performance profile, define the optimization problem and
propose an optimization algorithm in this section.

4.1 Performance Profile of Serverless Functions
On FaaS platforms, increasing the memory of a function
can improve the CPU and IO performance, but it does not
necessarily reduce the response time of the function signifi-
cantly, especially when the performance becomes insensitive
to the memory when the amount is large enough. As shown
in Figure 2, when the allocated memory is greater than
1792MB, the response time remains almost the same, and
at this time, the continued increase in memory size incurs
additional cost due to the rounding and granularity of billed
duration. Similarly, albeit larger allocated memory size leads
to a higher price per second of billed duration, the cost may
decrease with larger memory, especially before the perfor-
mance becomes insensitive. For the performance-memory
curve of functions, as the allocated memory size increases,
response time decreases first and then levels out, since the
performance becomes insensitive. However, because of the
rounding and billing granularity, there are large fluctuations
in the cost-memory curve of functions.

Therefore, as mentioned in the best practices for working
with AWS Lambda Functions, to find an optimal allocated
memory size satisfying both the trade-off between perfor-
mance and price and the required memory size for the
function execution, a performance profiling phase is highly-
recommended to test the performance of the FaaS func-
tions [32]. In the performance profiling phase, the function

is invoked using the payload with the average input size
multiple times under different allocated memory size, and
the average duration of invocations is logged. By doing so,
we can acquire a set of viable memory size and a series
of function response time under different memory sizes.
Figure 2 demonstrates the performance-memory curve of
a function obtained in the performance profiling phase.
Explicitly, we let MOpt denote a memory option function
mapping the function to its viable memory options, defined
as Equation (16).

MOpt : V → ℘ (N) (16)

The performance profile of a function fu, which de-
scribes the response time of the function under differ-
ent allocated memory sizes, is defined as Equation (17).
PF (fu,memv) is the response time of fu with the allocated
memory size of memv , where fu ∈ V and memv ∈
MOpt(fu).

PF :]
f∈V
{{f} ×MOpt (f)} → [0,+∞) (17)

Considering the performance profile of functions, in this
section, we extend the definition of serverless workflow as

Gs = (V,E, P,D,RT,RTTP,M,NI,C,MOpt, PF)

where MOpt and PF are defined as Equation (16) and
Equation (17), respectively. Let MOpt (f) , ∅ for all f is
not a FaaS function.

4.2 Problem Statement

Considering a serverless workflow Gs with n functions,
where V = {f1, f2, ..., fn−1, fn}, we define π as a memory
configuration of the workflow, such that

π ∈MOpt (f1)×MOpt (f2)× ...×MOpt (fn)

π(f) denotes the size of the allocated memory of the func-
tion f in this configuration. Let ERTπ denote the end-
to-end response time of Gs obtained by the performance
model and Cπ (fu) denote the cost of the function fu ob-
tained by the cost model, under the memory configuration
π, such that (i) M(fi) = π(fi), for all 1 ≤ i ≤ n, (ii)
RT (fi) = PF (fi, π (i)), for all 1 ≤ i ≤ n. For a given
budget limit BC , and a performance constraint PC, we
define the following two optimization problems.

4.2.1 Best Performance under Budget Constraint
(BPBC)

Find a memory configuration π that achieves the minimum
average end-to-end response time of the application with
the average cost less than or equal to the budget BC .

arg min
π

ERTπ (Gs)

subject to
n∑
i=1

Cπ(fi) ≤ BC
(18)

11

4.2.2 Best Cost under Performance Constraint (BCPC)

Find a memory configuration π that achieves the minimum
average cost of the application with the average end-to-
end response time less than or equal to the performance
constraint PC.

arg min
π

n∑
i=1

Cπ(fi)

subject to ERTπ (Gs) ≤ PC
(19)

4.3 Problem Complexity Analysis

We prove that BPBC and BCPC problems in the server-
less computing paradigm are fundamentally more complex
variants of the multiple-choice knapsack problem (MCKP).
MCKP is formulated as follows. Given n sets N1,N2, ...,Nn
of items, where each item in each set has a profit and a
weight, by selecting exactly one item from each set, the
optimization problem is to find a selection combination
ς ∈ N1 × N2 × ... × Nn such that ς maximizes the total
profit while the total weight within the capacity. MCKP has
been applied to many optimization problems, including re-
source allocation and workflow optimization in the parallel
computing and microservice-based applications [33], [34].

In BPBC and BCPC problems, the n functions, viable
allocated memory sizes of each function MOpt, and the
memory configuration π are equivalent to n sets, a number
of items in each set, and selection combination ς in MCKP,
respectively. For the BPBC problem, BC corresponds to the
knapsack capacity constraint, −PF (f,Mk) can be viewed
as the profit of the function f ∈ V with the allocated mem-
ory size of Mk ∈MOpt(f), and corresponding cost C(f) is
equivalent to the weight. Instead of simply accumulating
values, the total profit in the BPBC problem, represents
the end-to-end response time of the application, should be
derived by the performance modeling algorithm defined in
Algorithm 2. Similarly, for the BCPC problem, PC corre-
sponds to the knapsack capacity constraint, the cost C(f)
of the function f under the memory Mk ∈ MOpt(f) can
be viewed as the profit of the function, the response time
PF (f,Mk) can be deemed as the weight.

Compared to MCKP, the higher complexity of BPBC and
BCPC problems lies in calculating the total profit and total
weight, which leverages the polynomial-time performance
and cost models defined in Section 3. Besides, for a given
memory configuration and corresponding response time,
we can check whether the average end-to-end response
time and total cost under such a configuration satisfy the
constraints in polynomial time. Hence, BPBC and BCPC
problems in the serverless computing paradigm are funda-
mentally more complex variants of MCKP.

As MCKP has proven to be a NP-complete problem
without any solutions in polynomial time, unless P =
NP [35], we have to resort to a heuristic algorithm to solve
BPBC and BCPC problems.

4.4 Probability Refined Critical Path Algorithm (PRCP)

In this section, we propose a heuristic algorithm based on
the critical path method to solve BPBC and BCPC problems.

4.4.1 Critical Path Method

Critical path method (CPM) is a heuristic approach for
scheduling problems, which optimizes the scheduling
scheme by identifying and rescheduling the path with the
longest execution time [36]. CPM has proven to be an
effective solution to scheduling problems in many areas
including the scientific workflow system [33], distributed
computing framework [37], IaaS paradigm [38], and CaaS
paradigm [34]. However, previous studies have largely ap-
plied CPM to DAG workflows. As mentioned in Section 2,
there can be cycles and loops in the serverless workflow, to
which the traditional CPM is not applicable.

4.4.2 Algorithm Design

We propose a Probability Refined Critical Path Algorithm
(PRCP) to solve BPBC and BCPC optimization problems
for non-DAG serverless workflows. To work with non-DAG
workflow topology, PRCP refines the transition probability
of edges and simple paths as well as the weight of simple
paths based on the transition probability, and leverages a
weight-based definition of the critical path. PRCP recur-
sively optimizes the memory of functions on the critical
path using a greedy manner and obtains the best memory
configurations satisfying the constraint.

Based on the definition of the serverless workflow, due
to transition probabilities and structures in the workflow,
the path with the longest delay may not be the critical path
in terms of the response time and cost. Therefore, we need
to re-define the critical path to take the transition probability
of the path and iterations incurred by cycles and loops into
account.

For a simple path sk = f1e1f2e2...en−1fn, we define the
weight of sk as Equation (20).

W (sk) =
n∑
i=1

RT (fi)NI (fi)TPP (sk) (20)

Given a set of M simple paths, we define the path with ith

greatest weight as the ith critical path, such that 1 ≤ i ≤M .
We denote FindCriticalPath(G, i) as a procedure which
returns the ith critical path in G.

Given a function fu and a new memory size memv ∈
MOpt(fu), by assigning the new allocated memory size
memv to fu, we define the change of end-to-end response
time and the change of cost, as ∆ERT (fu,memv) and
∆C (fu,memv), respectively, where

∆ERT (fu,memv) = ERT γ (Gs)− ERTcurr
∆C (fu,memv) =

n∑
i=1

Cγ (fi)− Ccurr

such that (i) ERTcurr and Ccurr are the end-to-end re-
sponse time and cost under the previous configuration π;
(ii) γ (fu) = memv ; (iii) γ (fi) = π (fi) for all 1 ≤ i ≤ n and
i 6= u.

Algorithm 4 demonstrates the pseudocode of the PRCP
algorithm solving the BPBC problem. The input are the
budget constraint BC and a serverless workflow Gs with n
functions, where V = {f1, f2, ..., fn−1, fn}. PRCP first ini-
tializes the workflow by employing the minimum memory
configuration πmin, such that πmin (fi) = min (MOpt (fi))

12

for all 1 ≤ i ≤ n. The workflow has the largest end-to-
end response time under the minimum memory configura-
tion. PRCP recursively finds the critical path and calculates
∆ERT and ∆C under all possible allocated memory size
of all functions in the critical path. If there are functions
and memory size options that can reduce the cost without
increasing the end-to-end response time of the workflow,
namely ∆C < 0 and ∆ERT ≤ 0, PRCP selects the function
and memory size resulting in the largest cost decrease. If
not, PRCP chooses the function and memory size achieving
the largest end-to-end response time decrease within the
budget constraint. If there is no feasible memory size option
within the tth critical path, where t is initialized as 1, PRCP
will find the (t+ 1)th critical path in the next iteration, and
so on. The iteration ends when there is no feasible memory
size option in the least critical path with the current surplus.

Algorithm 4: PRCP-BPBC
Input: Budget constraint BC , serverless workflow
Gs = (V,E, P,D,RT,RTTP,M,NI,C,MOpt, PF)

Output: memory configuration π satisfying eq. (18)
1 M ←M [f 7→ min (MOpt (f))] ,∀f ∈ V ; . use the

minimal memory configuration πmin

2 Gdl ← (V,E′, P ′, RT,M,NI,C,MOpt, PF); . Get the

de-looped graph using steps in Section 3.4

3 NSP ← |ASPGdl (fstr, fend)|; . number of simple

paths in Gdl

4 πcurr ← πmin; . current memory configuration

5 Ccurr ←
n∑
i=1

Cπmin(fi); . current cost

6 ERTcurr ← ERTπmin (Gs); . current end-to-end RT

7 t← 1;
8 while BC − Ccurr > 0 and t ≤ NSP do
9 scp ← FindCriticalPath (Gdl, t); . find tth

critical path in Gdl

10 for all functions fi in scp do
11 for all selectable memory memj ∈MOpt(fi) do
12 Calculate ∆ERT (fi,memj) and

∆C (fi,memj);
13 end
14 end
15 if ∃memv ∈MOpt (fu): ∆ERT (fu,memv) ≤ 0 and

∆C (fu,memv) < 0 then
16 ftmp,memtmp ← arg min

fu,memv

∆C (fu,memv);

17 else
18 ftmp,memtmp ← arg min

fu,memv

∆ERT (fu,memv)

s.t. ∆C (fu,memv) ≤ BC − Ccurr and
∆ERT (fu,memv) < 0. If there are multiple
functions and memory values that achieve the
same maximum ∆ERT , select fu and memv

that leads to the smallest ∆C;
19 end
20 if ftmp and memtmp exist then
21 M ←M [ftmp 7→ memtmp];
22 RT ← RT [ftmp 7→ PF (ftmp,memtmp)];
23 πcurr ← πcurr (ftmp) , memtmp;
24 Ccurr ← Ccurr + ∆C (ftmp,memtmp);
25 ERTcurr ← ERTcurr + ∆ERT (ftmp,memtmp);
26 else
27 t← t+ 1;
28 end
29 end
30 return πcurr

Algorithm 5 provides the pseudocode of the PRCP algo-
rithm solving the BCPC problem. For the the BCPC problem,
PRCP algorithm first initializes the workflow by employ-
ing the maximum memory configuration πmax, such that
πmax (fi) = max (MOpt (fi)) for all 1 ≤ i ≤ n. The work-
flow has the smallest end-to-end response time under the
maximum memory configuration. PRCP recursively finds
the critical path, but starts with the path with the smallest
weight, then calculates ∆ERT and ∆C under all possible
allocated memory size of all functions in that path. If there
are functions and memory size options that can reduce the
end-to-end response time of the workflow without incurring
additional cost, namely ∆ERT < 0 and ∆C ≤ 0, PRCP
selects the function and memory size leading to the largest
end-to-end response time decrease. If not, PRCP chooses
the function and memory size resulting in the largest cost
decrease within the performance constraint. If there is no
feasible memory size option within the tth critical path,
where t starts with the number of simple paths inGdl, PRCP
will find the (t− 1)th critical path in the next iteration, and
so on. The iteration ends when there is no feasible memory
size option even in the most critical path with the current
surplus in terms of the performance.

4.4.3 Benefit/Cost Ratio (BCR) Greedy Strategies
PRCP algorithm is essentially a greedy heuristics for BPBC
and BCPC problems. The steps with a box in Algorithm 4
and Algorithm 5 are greedy strategies. For instance, in the
BPBC problem, the greedy strategy is to find the fu and
memv ∈ MOpt(fu) in each critical path iteration, which
can lead to the greatest end-to-end response time reduction.
However, the local optimization achieved by such a strategy
might compromise the global optimization. As mentioned
in Section 4.1 and shown in Figure 2, after the performance
becomes insensitive to the memory, the performance gain of
the function brought by the increase in memory is insignif-
icant, and due to rounding and billing granularity, the cost
may increase significantly.

To avoid bad optimization solutions, we introduce the
benefit/cost ratio (BCR) into greedy strategies. Instead of
arbitrarily maximizing the end-to-end response time reduc-
tion, the strategy is to find the configuration achieving the
optimal BCR. In other words, the idea is to find the configu-
ration leading to the optimal benefit for its cost. We propose
three BCR greedy strategies for each optimization problem
and integrate them into the PRCP algorithm. For the BPBC
problem, strategies are MAX , ERT/C , and RT/M . For the
BCPC problem, strategies are MAX , C/ERT , and M/RT .

In the MAX strategy for the BPBC problem, the reduc-
tion on end-to-end response time is the benefit, and the
cost is the increased cost of the workflow incurred by the
configuration. Namely, for the function fu and a selectable
memory size memv ∈MOpt(fu), BCR is defined as

BCR (fu,memv) =

∣∣∣∣∆ERT (fu,memv)

∆C (fu,memv)

∣∣∣∣ (21)

The MAX strategy finds the fu and memv ∈ MOpt(fu)
in each critical path iteration leading to the maximum BCR,
which is defined as Equation (21).

The ERT/C strategy has the same definitions of the
benefit and cost as the MAX strategy. A BCR threshold,

13

Algorithm 5: PRCP-BCPC
Input: Performance constraint PC, serverless

workflow
Gs = (V,E, P,D,RT,RTTP,M,NI,C,MOpt, PF)

Output: memory configuration π satisfying eq. (18)
1 M ←M [f 7→ max (MOpt (f))] ,∀f ∈ V ; . use the

minimal memory configuration πmax

2 Gdl ← (V,E′, P ′, RT,M,NI,C,MOpt, PF); . Get the

de-looped graph using steps in Section 3.4

3 NSP ← |ASPGdl (fstr, fend)|; . number of simple

paths in Gdl

4 πcurr ← πmax; . current memory configuration

5 Ccurr ←
n∑
i=1

Cπmax(fi); . current cost

6 ERTcurr ← ERTπmax (Gs); . current end-to-end RT

7 t← NSP;
8 while PC − ERTcurr > 0 and t ≥ 1 do
9 scp ← FindCriticalPath (Gdl, t); . find tth

critical path in Gdl

10 for all functions fi in scp do
11 for all selectable memory memj ∈MOpt(fi) do
12 Calculate ∆ERT (fi,memj) and

∆C (fi,memj);
13 end
14 end
15 if ∃memv ∈MOpt (fu): ∆C (fu,memv) ≤ 0 and

∆ERT (fu,memv) < 0 then
16 ftmp,memtmp ← arg min

fu,memv

∆ERT (fu,memv);

17 else
18 ftmp,memtmp ← arg min

fu,memv

∆C (fu,memv)

s.t. ∆ERT (fu,memv) ≤ PC − ERTcurr and
∆C (fu,memv) < 0. If there are multiple
functions and memory values that achieve the
same minimum ∆C, select fu and memv that
leads to the smallest ∆ERT ;

19 end
20 if ftmp and memtmp exist then
21 M ←M [ftmp 7→ memtmp];
22 RT ← RT [ftmp 7→ PF (ftmp,memtmp)];
23 πcurr ← πcurr (ftmp) , memtmp;
24 Ccurr ← Ccurr + ∆C (ftmp,memtmp);
25 ERTcurr ← ERTcurr + ∆ERT (ftmp,memtmp);
26 else
27 t← t− 1;
28 end
29 end
30 return πcurr

denoted as TH , is leveraged. The ERT/C strategy keeps
a record of the BCR of the configuration in the previous
critical path iteration, denoted as BCRpre. Instead of sim-
ply maximizing BCR, the ERT/C strategy finds fu and
memv ∈ MOpt(fu) that results in the maximum BCR such
that BCR ≥ BCPpre · TH .

In the RT/M strategy, we introduce a BCR threshold
TH and consider the two-point slope of the performance-
memory curve as the BCR, namely

BCR (fu,memv) =
PF (fu,memv+1)− PF (fu,memv)

memv+1 −memv
(22)

where memv+1 ∈ MOpt(fu) is the adjacent selectable
memory size such that memv+1 > memv . For each function

TABLE 2
Summary of BCR Greedy Strategies. It contains BCR, optimization goal
in each iteration, and the conditions to which the optimization is subject.

Strategy BCR Def. Maximize Subject To

BPBC Problem

W/O BCR N/A ERT Red. None
MAX eq. (21) BCR None
ERT/C eq. (21) BCR BCR ≥ BCRpre · TH
RT/M eq. (22) ERT Red. BCR

(
fi,memj

)
≥ β

(
fi

)
· TH

BCPC Problem

W/O BCR N/A Cost Red. None
MAX eq. (21) −1 BCR None
C/ERT eq. (21) −1 BCR BCR ≥ BCRpre · TH
M/RT eq. (22) −1 Cost Red. BCR

(
fi,memj

)
≥ β

(
fi

)
· TH

fi ∈ V , the RT/M strategy algorithm first calculates the
slope of the performance-memory curve by the least squares
regression, denoted as β (fi). Then, the algorithm removes
all memory options from the viable memory options whose
BCR is smaller than β (fi) ·TH . After this step, the memory
option function satisfies β (fi) · TH for all 1 ≤ i ≤ n and
all memj ∈ MOpt(fi). In each critical path iteration, the
algorithm finds the fu and memv ∈ MOpt(fu) resulting in
the greatest end-to-end response time reduction.

Correspondingly, MAX , C/ERT and M/RT are three
BCR greedy strategies for the BCPC problem, where the
BCR is defined as the multiplicative inverse of the BCR
defined for the BPBC problem. In the M/RT strategy, the
algorithm calculates the slope of the memory-performance
curve. Table 2 gives the summary of the original PRPC
algorithm and BCR greedy strategies. Besides the s.t. con-
ditions mentioned in Table 2, as specified in the pseudocode
of the PRPC algorithm, all strategies should also satisfy
∆C (fu,memv) ≤ BC −Ccurr and ∆ERT (fu,memv) < 0
for the BPBC problem, and ∆ERT (fu,memv) ≤ PC −
ERTcurr and ∆C (fu,memv) < 0 for the BCPC problem.

4.4.4 Time Horizon of Modeling and Optimization

The proposed models and optimization algorithms can be
updated by new monitoring data depending on the degree
of uncertainty in the underlying FaaS infrastructure and the
serverless application itself. However, if the initial perfor-
mance profiling phase has been done properly, the perfor-
mance and cost models and optimal configurations should
remain valid for a long time. Other reasons for updating the
model will be changing the function configurations, the ap-
plication architecture, function source code, or optimization
constraints. From a practical point of view, these parameters
are not expected to change frequently. Suppose any of the
parameters mentioned above, except function source code,
changes. In that case, users only need to rerun performance
and cost models and optimization algorithms, which can
be completed easily in a short time. If the function source
code changes, updating the performance profile is required
for the modified function, which is comparatively time-
consuming and perhaps costly.

14

fufu

Start Endf1

f3

f2

f4

f5

f10f10

f9 f15 f16
f6

f11
f12 f14f13

f8f7

S1

S2 S3

S4

1

1

1

0.6

0.4

0.8

0.2

1

1 1 1

0.3 0.7

1

1

1 0.95

0.05

1

1

0.9

0.1

0.8

0.2

1

fu
CPU

intensive
Disk I/O

intensive
Network I/O

intensive

Workload Type

Workflow of Apps
App16: as is
App14: remove and replace S4
App12: remove and replace S3 and S4
App10: remove and replace S2 and S4
App8 : remove and replace S1 and S2

Fig. 8. Workflow of serverless applications used in the experimental evaluation of performance and cost models. The number on each edge
represents the transition probability. The workflow of App16 is as shown. The workflow of other four Apps can be obtained by removing and
replacing all edges and functions in corresponding box(es) with an edge whose transition probability is 1. The transition delay is defined using the
delay model of AWS Step Functions. The applications are composed of functions with three different types of workload depicted by three colors.

5 EXPERIMENTAL EVALUATION

We implement the performance and cost models and the
PRCP algorithm using Python 3.8, and develop a ready-to-
use script to help developers make use of them. We validate
the performance and cost model by conducting experiments
on six serverless applications deployed on AWS, and ex-
amine the performance of the PRCP algorithm using an
application with six functions. All algorithms, scripts, and
experimental results are available in the artifact repository.

5.1 Performance and Cost Models
5.1.1 Experimental Design
To evaluate performance and cost models, we design five
serverless applications composed of various number of FaaS
functions with mixed types of workload. We deploy func-
tions on AWS Lambda and employ AWS Step Functions as
the serverless application coordinator. AWS Step Functions
is a serverless workflow coordination service that combines
multiple Lambda functions and other serverless services
offered by AWS into responsive serverless applications [20].

We design FaaS functions with three different types
of workload, namely CPU intensive, disk I/O intensive,
and network I/O intensive. The CPU-intensive workloads
include string hashing, floating-point arithmetic, and recur-
sive calculation. The disk-intensive workload is to write
and read several files to the hard disk drive. The network-
intensive workload is designed to download and upload a
number of files from and to the AWS S3 bucket. We develop
sixteen functions with different input sizes and types of
workload and host them on AWS Lambda.

By leveraging AWS Step Functions, we develop five
serverless applications using those sixteen functions, which
are App8, App10, App12, App14, and App16. The numeric
suffix of the application name represents the number of
functions in the application. From App8 to App16, we
increase the number of functions from eight to sixteen,
as well as the number of structures (parallels, branches,
cycles, and self-loops) in the application workflow. As a
result, the complexity of the workflow grows accordingly.
Besides, each application has a combination of all three
types of workloads, making them truly representative of
actual serverless applications on cloud. The workflow of five
serverless applications are shown together in Figure 8.

We deploy sixteen functions on AWS Lambda and obtain
their average duration under a feasible memory configura-
tion by invoking each of them 720 times. Five aforemen-
tioned serverless applications are developed and deployed
on AWS Step Functions. For repeatability and rigorousness,
we follow the methodological principles proposed by Pa-
padopoulos et al. [39] and execute repeated experiments
and long runs. We execute each application for five peri-
ods of two hours with a two-hour interval between two
consequent periods. During each period, each application
is executed continuously with a 10-second interval between
two consequent invocations. For each execution period, we
discard executions in the first and last 10 minutes to avoid
any transient fluctuations in performance and only adopt
invocations between them. By doing so, for each application,
logs of 3,000 invocations are ready for analysis.

5.1.2 Experimental Result

By giving the workflows and the average duration and
allocated memory size of functions as inputs, we leverage
the proposed performance and cost models to obtain the
average end-to-end response time and cost of five serverless
applications. By analyzing logs of 3,000 invocations for each
application, we compare the results of performance and cost
models with the duration and billing logs reported by AWS.

Figure 9 and Figure 10 illustrate the experimental evalua-
tion result of the performance and cost models. As is evident
from the figures, both the average end-to-end response time
and cost derived by the proposed performance and cost
models are very close to the real values reported by AWS.
Regardless of the complexity of the workflow, the accuracy
of predicted average end-to-end response time and cost is
over 97.5%. Such results indicate the high accuracy of the
proposed performance and cost models.

5.2 Performance and Cost Optimization

5.2.1 Experimental Design

To evaluate the proposed performance and cost optimiza-
tion solution, namely the PRCP algorithm, we develop a
serverless application named App6. As the name suggests,
App6 is composed of 6 functions with three types of work-
load (CPU-intensive, disk-intensive, network-intensive). For

15

App8 App10 App12 App14 App16
Serverless Applications

2000

2500

3000

3500

4000

4500

5000
En

d-
to

-e
nd

 R
es

po
ns

e
Ti

m
e

in
 m

s

Average RT Reported by AWS
Average RT Reported by Model
RT Reported by AWS

90

92

94

96

98

100

Ac
cu

ra
cy

 in
 P

er
ce

nt
ag

e

Accuracy of RT Modeling

Fig. 9. Experimental evaluation result of the performance model. As
the number of functions in the application increases from 8 to 16, the
workflow become more complex in terms of structures. The average
accuracy is 98.75%. The box plot shows the maximal value, 25%, 50%,
75% percentiles and the minimal value of RT. The notch shows the 95%
confidence interval for the median of RT.

App8 App10 App12 App14 App16
Serverless Applications

60

80

100

120

140

160

180

200

Co
st

 p
er

 1
 M

illi
on

 E
xe

cu
tio

ns
 in

 U
SD Average Cost Reported by AWS

Average Cost Reported by Model
Cost Reported by AWS

99.0

99.2

99.4

99.6

99.8

100.0

Ac
cu

ra
cy

 in
 P

er
ce

nt
ag

e
Accuracy of Cost Modeling

Fig. 10. Experimental evaluation result of the cost model. The average
accuracy is 99.97%.

generality, App6 is designed to have all 4 types of structures,
namely the parallel, branch, cycle, and self-loop.

As described in Section 4.1, to optimize the performance
and cost of the serverless application, a performance pro-
filing phase is required to get the feasible memory config-
uration MOpt and performance profile PF of serverless
functions in the application. We deploy functions on AWS
Lambda, which allows the allocated memory to vary be-
tween 128 MB and 3,008 MB in 64MB increments, resulting
in 46 possible choices. We stipulate that all 46 memory sizes
are feasible choices for all functions. For each function, we
obtain its performance profile by the performance profiling
phase, during which the function is invoked 100 times under
each feasible memory size, and the duration is logged.

In order to measure the accuracy of solutions given by
the PRCP algorithm, an exhaustive search is necessary to
obtain the performance and cost of App6 under all possible
memory configurations. However, 6 functions with 46 pos-
sible memory choices lead to 9.47 billion states, making the
exhaustive search computationally unfeasible. Therefore, we
trim the number of memory choices while retain the trend
of the response time-memory size curve by sampling the
performance profile. After sampling, the viable memory
size of each function varies between 128 MB and 3,008 MB

f1Start
1

f2
f4

f3

f5 f6 End
1

1

1

1
1

0.2

0.8

0.1

0.7

0.2

Fig. 11. The workflow of App6. The legend is same as Figure 8.

in 192 MB increments, 16 choices left. Using the proposed
performance and cost models, we exhaustively obtain the
average end-to-end response time and cost of App6 under
16,777,216 different memory configurations. As evidenced
in Section 5.1.2, the performance and cost models can accu-
rately give the average end-to-end response time and cost
of the serverless application. Therefore, despite the fact that
we do not perform the test on AWS Step Functions to get
the performance and cost of App6 under 16,777,216 con-
figurations, which is financially and practically unfeasible,
the average end-to-end response time and cost derived from
proposed models can be regarded as actual values.

We choose the series of 100 equidistant values between
the minimum cost and the maximum cost as the budget
constraints and execute the PRCP algorithm to solve the
BPBC problem with four types of greedy strategies. Simi-
larly, we use the series of 100 equidistant values between
the minimum and the maximum end-to-end response time
as the performance constraints and solve the BCPC problem.
We compare the best performance and the best cost given
by the PRCP algorithm with the actual value derived by the
exhaustive search under each constraint value.

5.2.2 Experimental Result
Figure 11 shows the workflow of App6, and the perfor-
mance profile of functions is illustrated as Figure 12. There
are 1 parallel, 1 branch, 1 cycle, and 1 self-loop in App6.

Figure 13 depicts the best performance for the BPBC
problem achieved by the PRCP algorithm with four greedy
strategies. Considering the best performance among solu-
tions given by four strategies, compared to the ideal value,
the accuracy of the algorithm is calculated. For the 100 bud-
get constraints, the average accuracy of the PRCP algorithm
is 97.40%. Figure 14 illustrates the best cost achieved by
the PRCP algorithm solving the BCPC problem. For the
100 performance constraints, the average accuracy of the
PRCP algorithm is 99.63%. As is evident from Figure 13
and Figure 14, the accuracy of different greedy strategies
varies with different budget and performance constraints.
Therefore, the best method is to employ all four greedy
strategies in the PRCP algorithm and select the best solution
that is closest to the target performance or cost constraint.

6 RELATED WORK

The serverless computing paradigm has attracted a great
deal of interest from both academia and industry [8], [19],
[40]. However, few research studies have been directed at
the modeling and optimization of performance and cost of
serverless applications. Therefore, we provide an extensive
review of the literature in three fields, which are inherently
related to our topic, namely the performance modeling
of cloud applications, workflow scheduling in the cloud
environment, and serverless architecture.

16

500 1000 1500 2000 2500 3000
Allocated Memory Size in MB

0

1000

2000

3000

4000

5000

6000

7000
Du

ra
tio

n
in

 m
s

f1 (Disk-intensive)
f2 (CPU-intensive)
f3 (CPU-intensive)
f4 (Network-intensive)
f5 (CPU-intensive)
f6 (CPU-intensive)

Fig. 12. The performance profile of 6 functions in App6. The allocated
memory size varies between 128 MB and 3,008 MB in 64MB incre-
ments, resulting in 46 feasible memory choices.

60 80 100 120 140
Budget Constraint in USD (per 1 Million Executions)

2500

3000

3500

4000

4500

5000

5500

6000

6500

En
d-

to
-e

nd
 R

es
po

ns
e

tim
e

in
 m

s

Without BCR
BCR MAX
BCR ERT/C
BCR RT/M
Best Answer
Ideal BPBC Solution

0

20

40

60

80

100

Ac
cu

ra
cy

 in
 P

er
ce

nt
ag

e

Accuracy

Fig. 13. The result of the PRCP algorithm solving the BPBC problem.
BCR threshold is 0.2. The budget constraints are 100 equidistant values
between $58.86 (minimum cost) and $163.90 (maximum cost). The
average accuracy of the best answer is 97.40%. The best answer is
the minimal average response time among solutions.

5000 10000 15000 20000 25000
Performance Constraint in ms

60

65

70

75

80

85

90

Co
st

 p
er

 1
 M

illi
on

 E
xe

cu
tio

ns
 in

 U
SD

Without BCR
BCR MAX
BCR C/ERT
BCR M/RT
Best Answer
Ideal BCPC Solution

0

20

40

60

80

100

Ac
cu

ra
cy

 in
 P

er
ce

nt
ag

e

Accuracy

Fig. 14. The result of the PRCP algorithm solving the BCPC problem.
BCR threshold is 0.2. The performance constraints are 100 equidistant
values between 2748.24 ms (minimum ERT) and 25433.08 ms (maxi-
mum ERT). The average accuracy of the best answer is 99.63%. The
best answer is the minimal average cost among solutions.

6.1 Performance models for cloud computing

The problem of modeling the performance of cloud archi-
tectures and applications has been extensively investigated
over the past decade. Quality of service (QoS) requirements
including response time, availability, and reliability, as well
as monetary cost are the main focus of such models.

The queuing theory has been used to predict such QoS
metrics for cloud systems. Khazaei et al. [41] obtained the

distribution of response time and blocking probability with
regards to the number of servers and buffer size for a cloud
center using a semi-Markov M/G/m/m + r queue, where
r is the buffer size for incoming job. Using the task blocking
probability and mean response delay as indicators, this
work has been extended to predict the availability of cloud
systems later [42]. Vilaplana et al. [43] utilized M/M/1
and M/M/m queues to model a single entry server and
processing nodes on cloud to get the total response time
with regards to the service rate of processing nodes.

Petri net has also been proven to be an effective formal-
ism for modeling distributed systems with the concurrency
and synchronization. Chen et al. [25] leveraged a determin-
istic and stochastic Petri net to illustrate the performance
of producer/consumer based application models in the
cloud environment. Cao et al. [26] developed an evaluation
model based on Queuing Petri Net to model the throughput
of cloud systems with three different architectures. Rista
et al. [27] introduced the generalized stochastic Petri net
model, composed of the combination of timed and non-
timed nets, to predict the throughput and latency of the
network in container-based cloud environments.

All these works either assumed the cloud system is de-
signed homogeneously or required the parameters relevant
to the underlying resources and incoming requests, which
are not reasonable enough for the serverless paradigm be-
cause of the infrastructure-agnostic platform, event-driven
and highly decoupled software architecture, auto-scaling re-
sources, and elimination of resources management. Besides,
these approaches focused more on the performance analysis
and did not model the cost. We fill these gaps by proposing
a definition of the serverless workflow, and to the best of
our knowledge, the first performance and cost models that
are compatible with the current serverless paradigm.

6.2 Workflow scheduling in the cloud environment

In the past decade, researchers have extensively studied
the workflow scheduling problem for workflow-based ap-
plications in the cloud environment. Abrishami et al. [37]
presented a Partial Critical Paths algorithm to solve the best
cost under the performance constraint problem for QoS-
based workflows on the utility grid. Later, they extended the
work by considering several cloud features such as the pay-
as-you-go and duration-based billing model and applied the
algorithm to a workflow instance on IaaS clouds to solve the
same problem [38]. Lin et al. [33] proposed a Critical-Greedy
algorithm to solve the best performance under the budget
constraint problem for scientific applications. Faragardi et
al. [44] proposed a Greedy Resource Provisioning with the
consideration of heterogeneous cloud resources and the effi-
ciency rate of instances to solve the best performance under
the budget constraint problem for workflow applications
on IaaS Clouds. Bao et al. [34] designed a Greedy Recur-
sive Critical Path algorithm to find the configuration that
achieves the best performance under the budget constraint
for microservice-based applications on cloud.

This paper differs from the previous work at least in
the following aspects: 1) We consider the new features in
the serverless computing paradigm such as the memory-
dependent performance rules, GB-second billing model,

17

independently operated components, and event-driven ar-
chitecture. 2) The serverless workflow is not confined to
DAGs, and cycles and self-loops are allowed to appear in
the workflow. 3) We propose a Probability Refined Critical
Path Algorithm to solve both BPBC and BCPC problems for
serverless workflow based applications.

6.3 Serverless architecture
Many cloud service providers have launched their FaaS
platform, including AWS Lambda, Google Cloud Functions,
and Microsoft Azure Functions in recent years. Since then,
serverless computing has become an emerging technique
and research topic in both industry and academia. There
have been efforts made to topics including developing new
applications [45], [46], migrating to serverless [47], and
designing new software engineering methodology [48].

There have been some works on the performance profil-
ing of FaaS platforms. Jackson et al. [49] investigated the im-
pact of programming languages on the duration and cost of
FaaS functions. Wang et al. [14] evaluated the performance
of functions hosted on three FaaS platforms, which increases
with the allocated memory size. They also observed that the
underlying infrastructure of platforms is heterogeneous and
overhead caused by cold starts. Figiela et al. [15] conducted
performance tests by deploying a serverless workflow on
four FaaS platforms and measured the data transfer delay
between components and the container lifespan.

Several works presented a set of key challenges for the
serverless architecture. The challenge that many studies
have mentioned is the unpredictable performance and cost
due to the lack of performance and cost models [6], [7], [8],
[19]. The literate available on solving such a challenge is,
however, very limited. Cold start latency and high commu-
nication overhead between components are also common
concerns. Jonas et al. [19] discussed inadequate storage,
high communication overhead, high cold start latency, and
lack of predictable performance and cost of applications.
Shahrad et al. [50] found the containerization incurs huge
overhead and cold start brings the latency as high as 10
times of a small function’s execution time. Hellerstein et
al. [51] investigated cold start, limited storage, and commu-
nication overhead by case studies in distributed computing.

In this paper, we solve the unpredictable performance
and cost problem for serverless applications with perfor-
mance and cost models. We propose a serverless workflow
with the consideration of the communication latency, and
the cold start latency can be reflected in the model in a plug-
and-play manner. We also develop a heuristic algorithm to
solve the performance-cost trade-off problem.

7 CONCLUSION

In this work, we answered two research questions regarding
the modeling and optimization of performance and cost of
serverless applications. We laid out a formal definition of
the serverless workflow with the consideration of several
serverless features on clouds. Then we solved the unpre-
dictable performance and cost problems for serverless appli-
cations by proposing the performance and cost models. The
proposed models could accurately estimate the average end-
to-end response time and cost of serverless applications;

we checked the validity of the proposed models by exten-
sive evaluation of five serverless applications deployed on
Amazon AWS. Also, we solved two optimization problems,
namely the best performance under the budget constraint
and the best cost under the performance constraint. We
answered them by proposing a heuristic algorithm named
Probability Refined Critical Path algorithm with four greedy
strategies. Again, we verified the validity of the proposed
algorithms through experimental evaluations on AWS.

REFERENCES

[1] M. Armbrust and A. Griffith, “A berkeley view of cloud comput-
ing,” UC Berkeley EECS Technical Report EECS-2009-28, 2009.

[2] P. K. Senyo, E. Addae, and R. Boateng, “Cloud computing re-
search: A review of research themes, frameworks, methods and
future research directions,” International Journal of Information Man-
agement, vol. 38, no. 1, pp. 128–139, 2018.

[3] B. Varghese and R. Buyya, “Next generation cloud computing:
New trends and research directions,” Future Generation Computer
Systems, vol. 79, pp. 849–861, 2018.

[4] R. Vemula, “A new era of serverless computing,” in Integrating
Serverless Architecture, pp. 1–22, Springer, 2019.

[5] “Financial engines cuts costs 90% using aws lambda and serverless
computing.” https://aws.amazon.com/solutions/case-studies/
financial-engines/, 2018. [Online; accessed February-2-2020].

[6] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and Others,
“Serverless computing: Current trends and open problems,” in
Research Advances in Cloud Computing, pp. 1–20, Springer, 2017.

[7] A. Eivy, “Be wary of the economics of” serverless” cloud comput-
ing,” IEEE Cloud Computing, vol. 4, no. 2, pp. 6–12, 2017.

[8] E. Van Eyk, L. Toader, S. Talluri, L. Versluis, A. Ut, ă, and A. Iosup,
“Serverless is more: From paas to present cloud computing,” IEEE
Internet Computing, vol. 22, no. 5, pp. 8–17, 2018.

[9] E. Van Eyk, A. Iosup, S. Seif, and M. Thömmes, “The spec cloud
group’s research vision on faas and serverless architectures,” in
Proceedings of the 2nd International Workshop on Serverless Comput-
ing, pp. 1–4, 2017.

[10] H. Fingler, A. Akshintala, and C. J. Rossbach, “Usetl: Unikernels
for serverless extract transform and load why should you settle for
less?,” in Proceedings of the 10th ACM SIGOPS Asia-Pacific Workshop
on Systems, pp. 23–30, 2019.

[11] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck,
P. Aditya, and V. Hilt, “Sand: Towards high-performance server-
less computing,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pp. 923–935, 2018.

[12] “Release: Aws lambda on 2014-11-13.” https://aws.amazon.com/
releasenotes/release-aws-lambda-on-2014-11-13/, 2014. [Online;
accessed February-2-2020].

[13] “Aws lambda limits.” https://docs.aws.amazon.com/lambda/
latest/dg/limits.html, 2020. [Online; accessed February-2-2020].

[14] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking
behind the curtains of serverless platforms,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pp. 133–146, 2018.

[15] K. Figiela, A. Gajek, A. Zima, B. Obrok, and M. Malawski, “Perfor-
mance evaluation of heterogeneous cloud functions,” Concurrency
and Computation: Practice and Experience, vol. 30, no. 23, p. e4792,
2018.

[16] “New–provisioned concurrency for lambda func-
tions.” https://aws.amazon.com/blogs/aws/
new-provisioned-concurrency-for-lambda-functions/, 2019.
[Online; accessed February-2-2020].

[17] “Aws lambda pricing.” https://aws.amazon.com/lambda/
pricing/, 2020. [Online; accessed February-2-2020].

[18] G. McGrath and P. R. Brenner, “Serverless computing: Design,
implementation, and performance,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW),
pp. 405–410, IEEE, 2017.

[19] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, et al.,
“Cloud programming simplified: A berkeley view on serverless
computing,” arXiv preprint arXiv:1902.03383, 2019.

[20] “Aws step functions.” https://aws.amazon.com/step-functions/,
2020. [Online; accessed February-2-2020].

18

[21] “Create a serverless workflow with aws step functions and aws
lambda.” https://aws.amazon.com/getting-started/tutorials/
create-a-serverless-workflow-step-functions-lambda/, 2020.
[Online; accessed February-2-2020].

[22] “Ad hoc big data processing made simple with serverless
mapreduce.” https://aws.amazon.com/blogs/compute/
ad-hoc-big-data-processing-made-simple-with-serverless-mapreduce/,
2016. [Online; accessed February-4-2020].

[23] “Serverless reference architecture: Image recognition and
processing backend.” https://github.com/aws-samples/
lambda-refarch-imagerecognition, 2016. [Online; accessed
February-4-2020].

[24] “Serverless application lens aws well-architected frame-
work.” https://d1.awsstatic.com/whitepapers/architecture/
AWS-Serverless-Applications-Lens.pdf, 2019. [Online; accessed
February-4-2020].

[25] H. Chen, C. Zhou, Y. Qin, A. Vandenberg, A. V. Vasilakos, and
N. Xiong, “Petri net modeling of the reconfigurable protocol
stack for cloud computing control systems,” in 2010 IEEE Second
International Conference on Cloud Computing Technology and Science,
pp. 393–400, IEEE, 2010.

[26] Y. Cao, H. Lu, X. Shi, and P. Duan, “Evaluation model of the cloud
systems based on queuing petri net,” in International Conference
on Algorithms and Architectures for Parallel Processing, pp. 413–423,
Springer, 2015.

[27] C. Rista, M. Teixeira, D. Griebler, and L. G. Fernandes, “Evaluat-
ing, estimating, and improving network performance in container-
based clouds,” in 2018 IEEE Symposium on Computers and Commu-
nications (ISCC), pp. 00514–00520, IEEE, 2018.

[28] L. Versluis, E. Van Eyk, and A. Iosup, “An analysis of workflow
formalisms for workflows with complex non-functional require-
ments,” in Companion of the 2018 ACM/SPEC International Confer-
ence on Performance Engineering, pp. 107–112, 2018.

[29] A. Kumar and S. Mahendrakar, Serverless Integration Design Pat-
terns with Azure: Build powerful cloud solutions that sustain next-
generation products. Packt Publishing, 2019.

[30] “Aws samples.” https://github.com/aws-samples/, 2020. [On-
line; accessed March-16-2020].

[31] “Azure samples.” https://github.com/Azure-Samples, 2020. [On-
line; accessed April-4-2020].

[32] “Best practices for working with aws lambda functions.” https:
//docs.aws.amazon.com/lambda/latest/dg/best-practices.html,
2020. [Online; accessed February-12-2020].

[33] X. Lin and C. Q. Wu, “On scientific workflow scheduling in clouds
under budget constraint,” in 2013 42nd International Conference on
Parallel Processing, pp. 90–99, IEEE, 2013.

[34] L. Bao, C. Wu, X. Bu, N. Ren, and M. Shen, “Performance model-
ing and workflow scheduling of microservice-based applications
in clouds,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, pp. 2114–2129, Sep. 2019.

[35] O. Goldreich, P, NP, and NP-Completeness: The basics of computational
complexity. Cambridge University Press, 2010.

[36] J. E. Kelley Jr, “Critical-path planning and scheduling: Mathemat-
ical basis,” Operations research, vol. 9, no. 3, pp. 296–320, 1961.

[37] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Cost-driven
scheduling of grid workflows using partial critical paths,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 8,
pp. 1400–1414, 2011.

[38] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-
constrained workflow scheduling algorithms for infrastructure as
a service clouds,” Future Generation Computer Systems, vol. 29,
no. 1, pp. 158–169, 2013.

[39] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst,
J. Von Kistowski, A. Ali-eldin, C. Abad, J. N. Amaral, P. Tma,
and A. Iosup, “Methodological principles for reproducible per-
formance evaluation in cloud computing,” IEEE Transactions on
Software Engineering, 2019.

[40] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A preliminary
review of enterprise serverless cloud computing (function-as-a-
service) platforms,” in 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 162–169, IEEE,
2017.

[41] H. Khazaei, J. Misic, and V. B. Misic, “Performance analysis of
cloud computing centers using m/g/m/m+r queuing systems,”
IEEE Transactions on parallel and distributed systems, vol. 23, pp. 936–
943, May 2011.

[42] H. Khazaei, J. Mišić, V. B. Mišić, and N. B. Mohammadi, “Avail-
ability analysis of cloud computing centers,” in 2012 IEEE Global
Communications Conference (GLOBECOM), pp. 1957–1962, IEEE,
2012.

[43] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo, F. Abella, and J. Rius,
“A queuing theory model for cloud computing,” The Journal of
Supercomputing, vol. 69, no. 1, pp. 492–507, 2014.

[44] H. R. Faragardi, M. R. S. Sedghpour, S. Fazliahmadi, T. Fahringer,
and N. Rasouli, “Grp-heft: A budget-constrained resource provi-
sioning scheme for workflow scheduling in iaas clouds,” IEEE
Transactions on Parallel and Distributed Systems, 2019.

[45] A. Pérez, S. Risco, D. M. Naranjo, M. Caballer, and G. Moltó, “On-
premises serverless computing for event-driven data processing
applications,” in 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD), pp. 414–421, IEEE, 2019.

[46] Á. L. Garcı́a, J. M. De Lucas, M. Antonacci, W. Zu Castell,
M. David, M. Hardt, L. L. Iglesias, G. Moltó, M. Plociennik, V. Tran,
et al., “A cloud-based framework for machine learning workloads
and applications,” IEEE Access, vol. 8, pp. 18681–18692, 2020.

[47] V. Yussupov, U. Breitenbücher, F. Leymann, and C. Müller, “Facing
the unplanned migration of serverless applications: A study on
portability problems, solutions, and dead ends,” in Proceedings
of the 12th IEEE/ACM International Conference on Utility and Cloud
Computing, pp. 273–283, 2019.

[48] F. Samea, F. Azam, M. W. Anwar, M. Khan, and M. Rashid, “A
uml profile for multi-cloud service configuration (umlpmsc) in
event-driven serverless applications,” in Proceedings of the 2019
8th International Conference on Software and Computer Applications,
pp. 431–435, 2019.

[49] D. Jackson and G. Clynch, “An investigation of the impact of
language runtime on the performance and cost of serverless
functions,” in 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion (UCC Companion), pp. 154–160,
IEEE, 2018.

[50] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implica-
tions of function-as-a-service computing,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 1063–1075, 2019.

[51] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing:
One step forward, two steps back,” arXiv preprint arXiv:1812.03651,
2018.

Changyuan Lin (Student Member, IEEE) is an
M.Sc. student in Software Engineering and In-
telligent Systems at the Department of Electri-
cal and Computer Engineering, University of Al-
berta, Edmonton, AB, Canada. He received his
B.E. degree in Microelectronics from East China
Normal University, Shanghai, China in 2018. He
is a research assistant at the University of Al-
berta and a visiting research assistant in the
Performant and Available Computing Systems
Lab at York University, Toronto, ON, Canada.

His research interests include cloud computing, serverless architecture,
performance modeling, and software engineering.

Hamzeh Khazaei (Member, IEEE) is an assis-
tant professor in the Department of Electrical
Engineering and Computer Science at York Uni-
versity. Previously he was an assistant professor
at the University of Alberta, a research associate
at the University of Toronto and a research sci-
entist at IBM, respectively. He received his PhD
degree in Computer Science from the University
of Manitoba, where he extended queuing theory
and stochastic processes to accurately model
the performance and availability of cloud com-

puting systems. His research interests include performance modelling,
cloud computing and engineering distributed systems.

View publication statsView publication stats

https://www.researchgate.net/publication/344638342

