
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, AUGUST 2020 1

Performance Modeling of Serverless Computing
Platforms

Nima Mahmoudi, Student Member, IEEE, and Hamzeh Khazaei, Member, IEEE

Abstract—Analytical performance models have been leveraged extensively to analyze and improve the performance and cost of
various cloud computing services. However, in the case of serverless computing, which is projected to be the dominant form of cloud
computing in the future, we have not seen analytical performance models to help with the analysis and optimization of such platforms.
In this work, we propose an analytical performance model that captures the unique details of serverless computing platforms. The
model can be leveraged to improve the quality of service and resource utilization and reduce the operational cost of serverless
platforms. Also, the proposed performance model provides a framework that enables serverless platforms to become workload-aware
and operate differently for different workloads to provide a better trade-off between the cost and performance depending on the user’s
preferences. The current serverless offerings require the user to have extensive knowledge of the internals of the platform to perform
efficient deployments. Using the proposed analytical model, the provider can simplify the deployment process by calculating the
performance metrics for users even before physical deployments. We validate the applicability and accuracy of the proposed model by
extensive experimentation on AWS Lambda. We show that the proposed model can calculate essential performance metrics such as
average response time, probability of cold start, and the average number of function instances in the steady-state. Also, we show how
the performance model can be used to tune the serverless platform for each workload, which will result in better performance or lower
cost without scarifying the other. The presented model assumes no non-realistic restrictions, so that it offers a high degree of fidelity
while maintaining tractability at large scale.

Index Terms—Serverless Computing, Performance Modeling, Optimization, Queuing Theory, Stochastic Processes.

F

1 INTRODUCTION

S ERVERLESS computing platforms handle almost every
aspect of the system administration tasks needed to

deploy a workload on the cloud. They provide users1 with
several potential benefits like handling all of the system
administration operations and improving resource utiliza-
tion, leading to potential operational cost savings, improved
energy efficiency, and more straightforward application de-
velopment [1], [2]. Although cloud functions have a much
faster startup (and thus scaling) than traditional VM-based
instances, they still show unpredictability in their key per-
formance metrics. This has proven to be unacceptable for
many customer-facing products [2].

Current serverless computing offerings are not
workload-aware and use the same policies for all
functions [3], [4], [5]. This leaves us with untapped
potential for savings in infrastructure costs incurred by
the provider, energy consumption, and improvements
in performance by adapting the platform to different
environments. Having an analytical performance model
would help application developers as well as serverless
operators to perform capacity planning and system study
within a couple of seconds without the need for large-scale

• N. Mahmoudi is with the Department of Electrical and Computer Engi-
neering, University of Alberta, Edmonton, Alberta, Canada.
E-mail: nmahmoud@ualberta.ca

• H. Khazaei is with the Department of Electrical Engineering and Com-
puter Science, York University, Toronto, Ontario, Canada.
E-mail: hkh@yorku.ca

Manuscript received April x, 2020; revised August xx, 2020.
1. we use the terms users and application developers interchange-

ably.

and expensive experiments. Thus, we decided to investigate
the performance of the serverless computing platform and
seek potential techniques that can be used to improve the
performance. In addition to analyzing the performance
of serverless computing platforms, we also identified a
method that can be leveraged to enhance the performance
of these systems.

Accurate performance modelling of serverless comput-
ing platforms can help ensure that the quality of service,
performance metrics, and the cost of the workload remains
within the acceptable range. It could also benefit providers
to help them tune their management for each workload in
order to reduce their infrastructure and energy costs [6].

The performance model used to address the
performance-related issues in serverless computing
platforms should prove to be tractable while covering
a vast parameter space of the system. To the best of
our knowledge, no such performance model has been
introduced for the modern serverless computing platforms.
In this work, we strive to develop and evaluate such a
model. We used AWS Lambda as an example of a modern
serverless computing platform to assess the proposed
analytical model.

The analytical model presented in this work assumes
a Poisson arrival process to address customer-facing open
networks. This is mainly due to the fact that when the
number of potential clients is high and each client submits
requests with a low probability, the requests’ arrival can be
adequately modelled as a Poisson process [7]. We impose
no restrictions on the service time by considering a gen-
erally distributed service time for functions. We consider
serverless computing platforms with the scale-per-request

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2020.3033373

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, AUGUST 2020 2

method of autoscaling utilized by public platforms such as
AWS Lambda, Google Cloud Functions, Azure Functions,
IBM Cloud Functions, and Apache OpenWhisk [3], [4].
This autoscaling has no queuing involved in the platform,
i.e. the request will be serviced by a warm instance of
the function2 if there is any available, or the platform
will spin up a new function instance to serve the request.
The presented model in this work is highly scalable and
can handle a high degree of parallelization common in
serverless computing platforms. The model predicts the
main system characteristics that can later be used to find
important performance metrics of the system. Our analytical
model is a tool that can be utilized by both serverless
computing platform providers and application developers
to predict steady-state performance metrics of the deployed
applications. This helps developers decide if a developed
workload would comply with their QoS agreements, and if
not, how much performance improvement they would need
to do so. The performance improvement decided could be
achieved either by improving the design, quality of code, or
by simply resizing the resource allocated to each instance,
which is usually set by changing the allocated memory.
Besides, the proposed performance model could be lever-
aged by the providers by providing developers with more
control over the cost-performance trade-off, which is not the
same for all functions deployed on a platform. In addition,
adaptive platform management could lower infrastructure
costs incurred by the provider, enabling them to lower their
prices, making their offerings more appealing.

Although the underlying system characteristics are not
directly measurable in publicly available serverless comput-
ing platforms, we deployed a specialized detective work-
load that makes it possible for us to extract these values.
We validated the presented analytical model by experimen-
tation showing the effectiveness of the model to capture the
complexities arising in public serverless platforms.

The remainder of the paper is organized as follows:
Section 2 describes the system represented by the analyt-
ical performance model proposed in this work. Section 3
outlines the proposed analytical model. In Section 4, we
present the experimental validation of the proposed model.
In Section 5, we survey the latest related work for serverless
computing platforms. Section 6 summarizes our findings
and concludes the paper.

2 SYSTEM DESCRIPTION

There is very little official documentation made publicly
available about the scheduling algorithms in public server-
less computing platforms. However, a number of previous
works have focused on partially reverse engineering this
information through the way of experimentations on these
platforms [3], [8], [9], [10]. Using the results of such re-
searches and by modifying their code base and thorough
experimentation, we have come to a good understanding
of how modern serverless frameworks are operated and
managed by the service providers. In this work, we plan
to use this information to build a tractable, yet accurate,

2. in this work, we use server, instance, container, and function
interchangeably.

performance model for modern serverless computing plat-
forms.

In serverless computing platforms, computation is done
in function instances. These instances are completely man-
aged by the serverless computing platform provider and
act as tiny servers for the incoming triggers (requests). To
develop a comprehensive analytical performance model for
serverless computing platforms, we first need to understand
how they work and are managed.

Function Instance States: using the findings of previ-
ous studies [3], [8], [11], we identify three states for each
function instance: initializing, running, and idle. The initial-
izing state happens when the infrastructure is spinning up
new instances, which might include setting up new virtual
machines, unikernels, or containers to handle the excessive
workload. The instance will remain in the initializing state
until it is able to handle incoming requests. As defined in
this work, we also consider application initializing which is
the time user’s code is performing initial tasks like creat-
ing database connections, importing libraries or loading a
machine learning model from an S3 bucket as a part of the
initializing state which needs to happen only once for each
new instance. Note that the instance cannot accept incoming
requests before performing all initialization tasks. It might
be worth noting that the application initializing state is billed
by most providers while the rest of the initializing state is
not billed. When a request is submitted to the instance, the
instance goes into the running state. In this state, the request
is parsed and processed. The time spent in the running state
is also billed by the serverless provider. After processing of
a request is over, the serverless platform keeps the instances
warm for some time to be able to handle later spikes in the
workload. In this state, we consider the instance to be in the
idle state. The user is not charged for an instance that is in
the idle state.

Cold/Warm start: as defined in previous work [3], [8],
[10], we refer to cold start request when the request goes
through the process of launching a new function instance.
For the platform, this could include launching a new virtual
machine, deploying a new function, or creating a new
instance on an existing virtual machine, which introduces an
overhead to the response time experienced by users. In case
the platform has an instance in the idle state when a new
request arrives, it will reuse the existing function instance
instead of spinning up a new one. This is commonly known
as a warm start request. Cold starts could be orders of
magnitude longer than warm starts for some applications.
Thus, too many cold starts could impact the application’s
responsiveness and user experience [3]. This is the reason
a lot of research in the field of serverless computing has
focused on mitigating cold starts [12], [13], [14].

Autoscaling: we have identified three main autoscal-
ing patterns among the mainstream serverless computing
platforms: 1) scale-per-request; 2) concurrency value scaling;
3) metrics-based scaling. In scale-per-request Function-as-a-
Service (FaaS) platforms, when a request comes in, it will
be serviced by one of the available idle instances (warm
start), or the platform will spin up a new instance for that
request (cold start). Thus, there is no queuing involved in
the system, and each cold start causes the creation of a
new instance which acts as a tiny server for subsequent

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2020.3033373

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, AUGUST 2020 3

requests. As the load decreases, to scale the number of
instances down, the platform also needs to scale the number
of instances down. In the scale-per-request pattern, as long as
requests that are being made to the instance are less than the
expiration threshold apart, the instance will be kept warm. In
other words, for each instance, at any moment in time, if a
request has not been received in the last expiration threshold
units of time, it will be expired and thus terminated by the
platform, and the consumed resources will be released. To
enable simplified billing, most well-known public serverless
computing platforms use this scaling pattern, e.g., AWS
Lambda, Google Cloud Functions, IBM Cloud Functions,
Apache OpenWhisk, and Azure Functions [3], [5]. As scale-
per-request is the dominant scaling technique used by major
providers, in this paper, we strive to analytically model this
type of serverless platform.

Fig. 1. The effect of the concurrency value on the number of function
instances needed. The left service allows a maximum of 1 request per
instance, while the right service allows a concurrency value of 3.

In the concurrency value scaling pattern [15], function
instances can receive multiple requests at the same time.
The average and maximum number of requests that can be
made concurrently to the same instance can be set via hard
and soft limits on the concurrency value. Figure 1 shows the
effect of hard limit of concurrency value on the autoscaling
behaviour of the platform. It is worth noting that the scale-
per-request autoscaling pattern might initially appear as
a special case of concurrency value scaling pattern where
concurrency value is set to 1, however, there are funda-
mental differences between these two autoscaling patterns
that led us to classify them into different categories. First,
the current generations of concurrency value autoscaling
platforms allow for queuing of requests in a shared queue,
however there is no queuing involved in scale-per-request
autoscaling. In scale-per-request autoscaling pattern, at the
time of arrival, an incoming request will either be assigned
to an idle instance (warm), or a newly instantiated instance
(cold), even if an instance in the warm pool becomes idle
while the cold instance is still being instantiated. However,
concurrency value autoscaling platforms allow queuing of
requests while new instances are being instantiated and
allows routing of the requests to an instance only after
it has done the initialization and is ready to serve new

requests. In addition, autoscaling in scale-per-request is
synchronous to request arrivals where the creation of an
instance (scaling out) happens on arrival of new requests.
However, in platforms like Google Cloud Run and Knative
which use concurrency value autoscaling, new instances are
created asynchronously on fixed intervals, e.g. 2 seconds in
Knative, and using evaluations of the average of measured
concurrency in stable and panic windows [16].

Metrics-based scaling tries to keep metrics like CPU or
memory usage within a predefined range. Most on-premises
serverless computing platforms work with this pattern due
to its simplicity and reliability. Some of the serverless com-
puting platforms that use this pattern are AWS Fargate,
Azure Container Instances, OpenFaaS, Kubeless, and Fis-
sion.

The analytical model proposed in this work considers
only the platforms that use the scale-per-request pattern due
to their importance and widespread adoption in mainstream
public serverless computing platforms.

Initialization Time: as mentioned earlier, when the
platform is spinning up new instances, they will first go
into the initialization state. The initialization time is the
amount of time it takes since the platform receives a request
until the new instance is up and running, and ready to
serve the request. The initialization time, as defined here,
is comprised of the platform initialization time and the
application initialization time. The platform initialization
time is the time it takes for the platform to make the function
instance ready, whether a unikernel or a container, and the
application initialization time is the time it takes for the
application to run the initialization code, e.g., connecting
to the database.

Response Time: the response time usually includes the
queuing time and the service time. Since we are addressing
the scale-per-request serverless computing platforms here,
there is no queuing involved for the incoming requests. Due
to the inherent linear scalability in serverless computing
platforms [3], [8], [10], the distribution of the response time
does not change over time with different loads. Therefore,
we leveraged delay centers [17] in order to analytically
model the response time in serverless computing platforms.

Maximum Concurrency Level: every public serverless
computing platform has some limitation on the number of
function instances that can be spun up and in running state
for a single function. This is mainly due to ensuring the
availability of the service for others, limiting the number
of instances one user can have up and running at the same
time. This is mostly known as the maximum concurrency level.
For example, the default maximum concurrency level for
AWS Lambda is 1000 function instances in 2020. When the
system reaches the maximum concurrency level, any request
that needs to be served by a new instance will receive an
error status showing the server is not able to fulfill that
request at the moment.

Request Routing: in order to minimize the number of
containers that are kept warm and thus to free up system
resources, the platform routes requests to new containers,
and it will use older containers only if all containers that
are created more recently are busy [18]. In other words, the
scheduler gives priority to newly instantiated idle instances
using priority scheduling according to creation time, i.e.,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2020.3033373

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, AUGUST 2020 4

TABLE 1
Symbols and their corresponding descriptions.

Symbol Description

λ Mean arrival rate of requests

µw Mean warm start service rate

µc Mean cold start service rate

ρ Offered load

PB,m Blocking probability for a warm pool of m instances

λw,m Actual arrival rate to the warm pool of m instances

λc,m Cold start arrival rate when we have m warm in-
stances

λw,m,i Actual arrival rate to ith instance in the warm pool of
m instances

Ii The ith instance in the warm pool

PS,n Probability of a request being served by the nth in-
stance in the warm pool

λw,m,i The arrival rate for warm instance Ii in a warm pool
of m instances

Creq,m,i Mean number of requests served by instance i in a
warm pool of m instances before being terminated

Plst,m,i Probability of a request being the last one before in-
stance termination

LSm,i Lifespan of the ith server in a warm pool of m in-
stances

Rexp,m,i The mean expiration rate of the ith server in a warm
pool of m instances

Rexp,m The mean total expiration rate in a warm pool of m
instances

Ra,m Mean transition rate of going from m to m+1 servers
in the warm pool

Q The transition rate matrix

π The steady-state distribution

Prej Probability of rejection by the system

PB Probability of blocking by the warm pool

Pcld Probability of cold start

RTavg Mean response time

RTw Mean warm start response time

RTc Mean cold start response time

Cw The mean number of servers in the warm pool

Cr Mean number of running instances

Cr,w The mean number of servers busy running warm
requests

Cr,w,m The mean number of servers busy running warm
requests in a warm pool of size m

Cr,c The mean number of servers busy running cold re-
quests

Cr,c,m The mean number of servers busy running cold re-
quests when the warm pool is of size m

Ci The mean number of idle servers

U Mean utilization

the newer the instance, the higher the priority. By adopting
this approach, the system minimizes the number of requests
going to older containers, maximizing their chance of being
expired and terminated.

3 ANALYTICAL MODELLING

Section 2 briefly outlines the scheduling algorithm used for
the serverless computing platforms and the one that we

consider in this work, i.e., scale-per-request. In this section,
we present our analytical performance model based on
this scheduling algorithm. Our primary focus is to obtain
steady-state metrics of the system based on the system and
workload characteristics.

An ideal serverless computing platform should act like
an M/G/∞ queuing system (aka delay center) with the
same service time distribution for all requests. However,
in current serverless computing platforms, the presence of
cold start, which could be orders of magnitude longer than
a warm start, and limitations on the concurrent number of
instances (i.e., servers), shown as maximum concurrency level,
lead to a more complex performance model. In this work,
we impose more restrictions on delay center theory to ac-
curately model the current serverless computing platforms
with a high degree of fidelity and tractability.

In the presented model, we leveraged a continuous-
time Semi-Markov Process (SMP) where the state number
represents the number of instances in the warm instance
pool, which is between 0 and maximum concurrency level. As
shown in Figure 2, adding an instance to the warm instance
pool is triggered by a cold start, causing a transition from
state i to i + 1 in our SMP model. In the proposed model,
each server is terminated and released after being idle for
some time. To calculate the associated transition rates, we
model each state of the SMP with an M/G/m/m queuing
system. The number of instances (m) can shrink (to the
minimum of zero instances in the warm pool) or expand (to
the maximum concurrency level) due to the fluctuation in
the workload. M/G/m/m queuing systems are appropriate
for modelling the warm instance pool since servers are
homogeneous, the discipline is non-preemptive FCFS, and
there is no priority among incoming requests. Thus, we as-
sume a Poisson arrival process, generally distributed service
times, with m warm instances and no extra queuing room
beside the server instances. In the following subsections,
we present the calculation of different parameters in our
analytical model using symbols defined in Table 1.

3.1 Cold Start Rate

As can be seen in Fig. 2, rejection of a request by the
warm pool triggers a cold start and thus adds a new
function instance to the warm pool to handle subsequent
requests. To obtain the rate at which new servers will
be instantiated, we need to calculate the probability of a
request being rejected by the warm pool. We know that the
state probabilities of the M/G/m/m loss system are identical
to the corresponding Markovian M/M/m/m system with
exponentially distributed service times [19]. To calculate the
blocking probability for the corresponding M/M/m/m loss
system, first, we need to calculate the offered load (ρ) in
terms of the arrival rate (λ) and the average service rate
(µw):

ρ = λ/µw (1)

Then, the Erlang’s B formula is obtained as [20]:

PB,m = B(m, ρ) =
ρm

m!∑m
j=0

ρj

j!

(2)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2020.3033373

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, AUGUST 2020 5

Fig. 2. An overview of the proposed system model using M/G/m/m
loss systems. In the case of workload fluctuation, m will change during
the runtime, just like a delay center. The blue arrows show the path a
successful cold start goes through.

This equation gives the probability of a request being
rejected (blocked) by the warm pool, assuming there are m
warm servers. If m is less than the maximum concurrency
level, the request blocked by the warm pool causes a cold
start. If the warm pool has reached the maximum concur-
rency level, any request rejected by the warm pool will be
rejected by the platform. We can also calculate the actual
arrival rate to the warm pool of m instances (λw,m) which
is less than λ since some arrivals are being rejected by the
warm pool:

λw,m = λ(1− PB,m) (3)

Using eq. (2), we can derive the rate at which cold starts
are happening in the system.

λc,m = λPB,m (4)

Figure 2 depicts an overview of the proposed model for
the rapid scaling up in scale-per-request serverless com-
puting platforms. Using this model, we can calculate the
performance metrics of interest in the system.

3.2 Arrival Rate for each Server
To calculate the rate at which servers will be expired and
consequently terminated, we first need to calculate the ar-
rival rate for each warm instance. Assuming that we have m
instances in warm pool as {I1, I2, ..., Im}, λw,m,n indicates
the arrival rate to instance In, where 1 ≤ n ≤ m. In our
model, we assume the instance I1 to be the newest server in
the system and Im to be the oldest instance in the system,
thus considering the scheduling assumptions laid in Sec-
tion 2, we can see that λw,m,1 > λw,m,2 > ... > λw,m,m since
the scheduler will first try to route the traffic to instance I1,
then I2, and it will route traffic to Im if and only if all other
warm instances are currently busy running another request
at the time of arrival.

When interpreting PB,n−1, as defined in eq. (2), we see
that it shows for what ratio of requests, instances {Ii; i =
1, 2, ..., n−1} are busy in the warm pool. Thus, PB,n−1 of the
incoming requests, will either be served by {Ii; i = n, n +
1, ...,m}, or be totally rejected by the system. Similarly, PB,n
of the incoming requests, will be served by {Ii; i = n+1, n+
2, ...,m}, or will be rejected by the system due to reaching
the maximum capacity. Using these two observations, we
can calculate the ratio of requests that are being processed
by In as:

PS,n = PB,n−1 − PB,n (5)

PS,n shows the probability of a request being served by in-
stance In, having PS,0=1. Using this probability, we can cal-
culate the arrival rate for each of instances {In; 1 ≤ n ≤ m}:

λw,m,n = λw,mPS,n (6)

3.3 Server Expiration Rate

In eq. (6), we calculated the arrival rate for individual
instances in the warm pool. In this section, our goal is to
calculate the mean lifespan of instances, considering that
they will be expired and subsequently terminated after
receiving no requests in expiration threshold units of time
after processing the last request.

Let’s assume the arrival rate λw,m,i for instance Ii with
exponential inter-arrival times. Thus, the Probability Den-
sity Function (PDF) of inter-arrival time is of the following
form:

P (X = x) = λw,m,i · e−λw,m,ix (7)

And the Cumulative Distribution Function (CDF) will be of
the following form:

P (X ≤ x) = 1− e−λw,m,ix (8)

The probability that a request is the last one before the
expiration of the server is equal to the probability that the
next inter-arrival time drawn is larger than T = Texp+1/µw,
which is equal to:

Plst,m,i = P (X ≥ T) = e−λw,m,iT (9)

Thus, whether or not the request arriving at a server is
the last one before the expiry of that server (shown as the
last request in Figure 3) has a geometric distribution with
the probability of Plst,m,i as the distribution parameter.
We know that the average number of trials (i.e., arrival of
requests) before the server is expired and terminated is:

Creq,m,i =
1

Plst,m,i
(10)

To see how long Creq,m,i requests will keep the server
warm, we need the expected inter-arrival time with an
arrival rate of λw,m,i which are less than T = Texp + 1/µw:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2020.3033373

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, AUGUST 2020 6

E[X;X < T] =

∫ T

0
xλw,m,ie

−λw,m,ixdx

=− x · e−λw,m,ix

∣∣∣∣T
0

+

∫ T

0
e−λw,m,ixdx

=− T · e−λw,m,iT − eλw,m,ix

λw,m,i

∣∣∣∣T
0

=− T · e−λw,m,iT +
1− eλw,m,iT

λw,m,i

(11)

Fig. 3. The server lifespan calculation overview.

Thus, the average lifespan of a server in the warm pool
could be calculated as follows (Figure 3):

E[LSm,i] = {(Creq,m,i−1)·E[X;X < T]}+ 1

µw
+Texp (12)

where E[LSm,i] denotes the average lifespan of a server in
the warm pool.

The expiration rate for servers can be calculated using
E[LSm,i]:

Rexp,m,i =
1

E[LSm,i]
(13)

which gives us the server expiration rate for Ii. Expiration
and terminating any servers in the warm pool will result
in having one less server in the pool. Thus, the overall
expiration rate for m servers would be the sum of these
rates:

Rexp,m =
m∑
i=0

Rexp,m,i (14)

This gives the rate at which servers in a pool of m servers
will be expired and terminated.

Fig. 4. The state transition diagram of the warm pool in serverless
platforms. This is a Semi-Markov process for which we provide a closed-
form steady-state solution. The dashed red self-loop shows rejected
requests due to insufficient capacity.

3.4 Modelling the Warm Pool

In sections 3.1 to 3.3, we calculated the cold start and server
expiration rates in the system. In this section, we model the
warm servers pool using a Semi-Markov Process (SMP), for
which we derive an exact closed-form steady-state solution.
The process is not Markovian since, as can be seen in Fig-
ure 3, the lifespan of servers, i.e., the states’ holding time,
is not clearly exponentially distributed. Figure 4 shows the
SMP model where M is the maximum number of servers
in the warm pool, also known as maximum concurrency
level, which is an inherent limitation in all public serverless
offerings. In each state, m shows the number of servers
in the warm pool. In other words, in each state the warm
pool is working like a loss system (i.e., M/G/m/m queue)
that can go to another state, i.e., a loss system with one
more or less function instance with the rate of Ra,m and
Rexp,m, respectively. λc,m and Rexp,m indicate the rate of
cold start and expiration of a server in a warm server pool
of size m, respectively. Also, µc is the rate of servicing a
cold start request. 1/λc,m shows the mean time between
two consecutive cold starts. But, when a cold start happens
in the system, the server will not be available in the warm
pool until the cold start service time has passed. This makes
the transition rate of going from m to m + 1 servers in the
warm pool as:

Ra,m =
1

1
λc,m

+ 1
µc

=
λc,m · µc
λc,m + µc

(15)

Fig. 5. One-step transition rate matrix for the proposed model.

The one-step transition rate matrix Q can be used to get
the limiting distribution π for the SMP. The transition rate
matrix used in this work is shown in Figure 5 where rows
and columns correspond to the number of servers in the
warm pool, starting with zero servers. Each element in the
transition rate matrix located in row i and column j shows
the rate at which the state transitions from state number i
to state number j. Diagonal elements Qi,i are defined such
that the following holds:

Qi,i = −
∑
j 6=i

Qi,j (16)

The steady-state distribution π is the unique solution to
the following equation system [21]:

π ·Q = 0 and
M∑
m=0

πm = 1 (17)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2020.3033373

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, AUGUST 2020 7

where πm represents the probability of having m servers
in steady-state. Algorithm 1 shows an overview of the pro-
posed analytical model. As shown, after calculating the SMP
model parameters for each number of function instances
in the warm pool (for each m), we solve the SMP for the
equilibrium distribution. Then, we can calculate the steady-
state characteristics of interest in the system:

Algorithm 1: Serverless Performance Model
Method

Input: λ, µw , µc, Texp, M
Output: metrics

1 ρ← λ/µw ;
2 m← 0;
3 props← empty array;
4 λc ← empty array;
5 Rexp ← empty array;
6 while m ≤M do
7 λc[m]← calculate cold start rate;
8 Rexp[m]← calculate expiration rate;
9 prop← calculate properties for warm pool with m;
10 props[m]← prop;
11 m← m+ 1;
12 end
13 Q← build transition rate matrix(λc,µc,Rexp);
14 πm ← solve the resulting SMP model using Q;
15 metrics←calculate properties using props and πm;

Probability of Rejection (Prej): as described in the
system description, when the system reaches the maximum
concurrency level, any request blocked by the warm pool
will be rejected by the system. Thus, the probability of rejec-
tion for a given request can be calculated as the following:

Prej = PB,MπM (18)

Probability of Cold Start (Pcld): the probability of a cold
start happening for each request is an important factor for
several reasons, including complying with the Quality-of-
Service (QoS) requirements. To calculate this metric, we first
need the probability of a request being blocked by the warm
pool:

PB =
M∑
m=0

PB,mπm (19)

Now, we can calculate the probability of cold start that
may happen for each request, knowing each request blocked
by the warm pool can either be a cold start or a rejected
request:

Pcld = PB − Prej (20)

Average Response Time (RTavg): the derivation of the
average response time is:

RTavg = RTw(1− PB) +RTcPcld (21)

where RTavg , RTw, and RTc denote the total average
response time and average response time for cold and warm
requests in steady-state, respectively. Also, note that µw =
1/RTw and µc = 1/RTc.

Mean Number of Instances in Warm Pool (Cw): know-
ing the average number of instances in the warm pool
could benefit both the service providers and the users of

the serverless computing platform. Users could use this
information to set the provisioned or reserved concurrency
levels [22]. Service providers could use this information to
modify their system-level settings based on the characteris-
tics of each workload.

The average number of servers in the warm pool Cw can
be calculated using πm since m represents the number of
servers in each state:

Cw =
M∑
m=0

mπm (22)

Mean Number of Running Instances (Cr): the average
number of servers busy running warm requests (Cr,w) can
be calculated using the following:

Cr,w,m = RTwλw,m = RTwλ(1− PB,m)

Cr,w =
M∑
m=0

Cr,w,mπm
(23)

Similarly, we can calculate the average number of servers
busy running cold requests (Cr,c), considering the fact that
requests blocked by the warm pool when reaching maxi-
mum concurrency level are rejected, and thus do not count
towards the running cold starts:

Cr,c,m =

{
0 if m =M

RTcλc,m = RTcλPB,m otherwise

Cr,c =
M−1∑
m=0

Cr,c,mπm

(24)

Thus, the average number of servers processing user
requests could be calculated:

Cr = Cr,w + Cr,c (25)

Mean Number of Idle Servers (Ci): as mentioned earlier,
the number of idle servers is proportional to the infrastruc-
ture overhead of the service provider. This property can be
calculated as follows:

Ci = Cw − Cr,w (26)

This equation is derived using the fact that warm instances
are either in the idle state, meaning they are not processing
any requests and are just reserved capacity, or they are in
the busy state, meaning they are processing a request.

Mean Utilization (U): in this context, the utilization
is defined as the ratio of warm instances that are busy
processing a request (Cr,w) over the total instances in the
warm pool (Cw). Knowing the average number of running
instances, and the average number of instances in the warm
pool, we can calculate the average utilization ratio:

U =
Cr,w
Cw

=
RTwλ(1− PB,m)∑

mmπm
(27)

The utilization metric is especially of importance for service
providers since they only charge users for instances that are
processing user requests, and thus the rest of the capacity is
considered additional costs for them.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2020.3033373

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, AUGUST 2020 8

3.5 Tractability Analysis
To study the tractability, i.e., scalability of our performance
model, we investigate how the complexity of the proposed
model grows when various parameters are increased. The
number of states in the final Semi-Markov Process model
is equal to the maximum concurrency level of the system
and grows linearly when increasing the maximum concur-
rency level. The rate calculations for the SMP model should
also prove to be tractable. Using the method outlined in
Algorithm 1, we can calculate the time complexity of the
analytical model. The expiration rate calculations can be
calculated for each state in O(1). Thus, the calculation of
expiration rates for the final model grows linearly with the
maximum concurrency level. The cold start rate calculation
requires the calculation of the Erlang formula, which grows
linearly with the number of servers in the state (m). Hence
the calculation of all cold start rates can be done in O(M2),
which can be calculated for any scale. Solving the resulting
SMP for equilibrium distribution is done in O(M3), which
makes the complexity of the whole process O(M3).

4 EXPERIMENTAL VALIDATION

In this section, we evaluate our analytical model by way of
experimentations on the AWS Lambda serverless platform.
All of our experiments were executed for a 28-hour window
with 10 minutes of warm-up time in the beginning, during
which we don’t record any data.

4.1 Experimental Setup
In our AWS Lambda deployment, we used the Python 3.6
runtime with 128 MB of RAM deployed on us-east-1 region
in order to have the lowest possible latency from our client
machine. The workload used in this work was based on
the work of Wang et al. [3] with minor modifications and
is openly available in our Github repository3. For the pur-
pose of experimental validation, we used a combination of
CPU intensive and I/O intensive workloads. As the CPU
intensive part, the function calculates the multiplication of
1 through 10, 000. The I/O intensive part of the workload
includes using dd tool4 to read and write a file of size
1MB, 5 times for each incoming request. During the ex-
perimentation, we have obtained performance metrics and
the other parameters such as cold/warm start information,
instance id, lifespan, etc., which have been used to guide
our analysis.

For the client triggering the deployed function, we used
a virtual machine hosted on Compute Canada Arbutus
cloud5 with 8 vCPUs, 16 GB of memory, and 1000 Mbps
network connectivity with single-digit milliseconds latency
to AWS servers. We used Python for the client’s program-
ming language, and the official boto3 library to communicate
with the AWS Lambda API to make the requests (trigger
the function) and process the resulting logs for each request
with a request-reply pattern. Note that we have not used
any intermediary interfaces like AWS Gateway, S3 storage,

3. https://github.com/pacslab/serverless-performance-modeling/
tree/master/deployments

4. https://man7.org/linux/man-pages/man1/dd.1.html
5. https://docs.computecanada.ca/wiki/Cloud resources

or message queues to mitigate the effect of their perfor-
mance fluctuations in our measurements. For load-testing
and generating client requests based on a Poisson process,
we used our in-house function triggering library6 which
is openly accessible through PyPi7. The result is stored
in a CSV file and then processed using Pandas, Numpy,
Matplotlib, and Seaborn. The dataset, parser, and the code
for extraction of system parameters and properties are also
publicly available in the project’s Github repository8.

To further improve the reproducibility of our work, we
also included a docker image containing the execution run-
time of our work which has the required libraries (including
our own) pre-installed and ready for use by the research
community.

4.2 Parameter Identification

We need to estimate the system characteristics to be used in
our model as exogenous parameters. In this section, we dis-
cuss our approach to estimating each of these parameters.

Expiration Threshold (Texp): here, our goal is to measure
the expiration threshold, which is the amount of time after
which inactive servers in the warm pool will be expired and
therefore terminated. To measure this parameter, we created
an experiment in which we make requests with increasing
inter-arrival times until we see a cold start meaning that the
system has terminated the server between two consecutive
requests. We performed this experiment on AWS lambda
with the starting inter-arrival time of 10 seconds, each time
increasing it by 10 seconds until we see a cold start. In
our experiments, AWS lambda seemed to expire a server
exactly after 10 minutes of inactivity (after it has processed
its last request). This number did not change in any of our
experiments leading us to assume it is a deterministic value.
This observation has also been verified in [4], [23].

Average Warm Response Time (RTw) and Average
Cold Response Time (RTc): to measure the average warm
response time and the average cold response time, we used
the average of response times measured throughout the
experiment.

4.3 Analytical Model Validation

In this section, we outline our methodology for measuring
the performance metrics of the system, comparing the re-
sults with the predictions of our analytical model.

Probability of Cold Start (Pcld): to measure the probabil-
ity of cold start, we divide the number of requests causing
a cold start by the total number of requests made during
our experiment. Due to the inherent scarcity of cold starts
in most of our experiments, we observed an increased noise
in our measurements for the probability of cold start, which
lead to us increasing the window for data collection to about
28 hours for each sampled point.

Mean Number of Instances in the Warm Pool (Cw): to
measure the mean number of instances in the warm pool, we
count the number of unique instances that have responded
to the client’s requests in the past 10 minutes. We use a

6. https://github.com/pacslab/pacswg
7. https://pypi.org/project/pacswg
8. https://github.com/pacslab/serverless-performance-modeling

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2020.3033373

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/pacslab/serverless-performance-modeling/tree/master/deployments
https://github.com/pacslab/serverless-performance-modeling/tree/master/deployments
https://man7.org/linux/man-pages/man1/dd.1.html
https://docs.computecanada.ca/wiki/Cloud_resources
https://github.com/pacslab/pacswg
https://pypi.org/project/pacswg
https://github.com/pacslab/serverless-performance-modeling

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, AUGUST 2020 9

unique identifier for each function instance to keep track of
their life cycle, as obtained in [3].

Mean Number of Running Instances (Cr,w): we calcu-
late this metric by observing the system every ten seconds,
counting the number of in-flight requests in the system,
taking the average as our estimate.

Mean Number of Idle Instances (Ci): this can be mea-
sured as the difference between the total average number
of instances in the warm pool and the number of instances
busy running the requests.

Utilization (U): similar to our model, this is defined as:

U =
Cr,w
Cw

(28)

0.01 0.10 1.00
Arrival Rate (reqs/s)

0

10

20

30

40

Pr
ob

. o
f C

ol
d

St
ar

t (
%

)

Model Prediction
Experiment

Fig. 6. Probability of cold start against arrival rate. The vertical bars show
one standard error around the measured point.

0.01 0.10 1.00
Arrival Rate (reqs/s)

2

4

6

Id
le

 In
st

an
ce

 C
ou

nt Model Prediction
Experiment

Fig. 7. The number of idle servers against arrival rate.

0.01 0.10 1.00
Arrival Rate (reqs/s)

0.00

0.05

0.10

0.15

0.20

0.25

U
til

iz
at

io
n

Model Prediction
Experiment

Fig. 8. Utilization against arrival rate.

4.4 Experimental Results
Figures 6 to 8 show the result of our experiments compared
with the analytical model results. For each point shown for
the experimentation, we ran a test with a Poisson arrival
rate with a constant mean for twenty-eight hours with ten
minutes of warm-up in the beginning. As can be seen, the
analytical performance model results are greatly in tune
with the experimental results.

0 1 10 100 600
Expiration Threshold (s)

0

20

40

60

80

100

Pr
ob

. o
f C

ol
d

St
ar

t (
%

)

W1
W2
W3
W4
W5

Fig. 9. Cold start probability against the expiration threshold. The arrival
rate has been set to 1 request per second. The legends denote warm
and cold service times. Note that the x-axis is on a logarithmic scale and
changes from 0.1 to 600 seconds.

0 1 10 100 600
Expiration Threshold (s)

0

2

4

6

8

10

Av
g.

 R
es

po
ns

e
Ti

m
e

(s
)

W1
W2
W3
W4
W5

Fig. 10. Average response time against the expiration threshold. The
arrival rate has been set to 1 request per second. Note that the x-
axis is on a logarithmic scale and changes from 0.1 to 600 seconds.
The vertical lines show the minimum expiration threshold for which the
average response time is at most 30% higher than the average warm
start response time.

4.5 Discussion
Section 4.4 outlined the experimental results and their com-
parison with the analytical performance model. As dis-
cussed earlier, these results show the effectiveness, tractabil-
ity, and fidelity of the model when applied to AWS
Lambda [24]. The model proposed in this work can be
applied to any serverless computing platform, as long as the
management complies with the system description outlined
in Section 2. The most important criterion is scale-per-
request behaviour (with no queuing). For example, Google

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2020.3033373

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, AUGUST 2020 10

0 1 10 100 600
Expiration Threshold (s)

0

10

20

30

40

50

60

70

80
U

til
iz

at
io

n
(%

)
W1
W2
W3
W4
W5

Fig. 11. Utilization against the expiration threshold. The arrival rate has
been set to 1 request per second. Note that the x-axis is on a logarithmic
scale and changes from 0.1 to 600 seconds.

0 1 10 100 600
Expiration Threshold (s)

0.0

2.5

5.0

7.5

10.0

Av
er

ag
e

In
st

an
ce

 C
ou

nt

W1
W2
W3
W4
W5

Fig. 12. Average instance count against the expiration threshold. The
arrival rate has been set to 1 request per second. Note that the x-axis is
on a logarithmic scale and changes from 0.1 to 600 seconds.

0 1 10 100 600
Expiration Threshold (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
st

im
at

ed
 U

se
r

C
os

t

W1
W2
W3
W4
W5

Fig. 13. Average estimated user cost against expiration threshold. The
arrival rate has been set to 1 request per second. Note that the x-axis is
on a logarithmic scale and changes from 0.1 to 600 seconds.

100 1000 10000 100000
Arrival Rate (reqs/s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

. o
f R

ej
ec

tio
n W1

W2
W3
W4
W5

Fig. 14. Probability of rejection against the arrival rate. The expiration
threshold has been set to 10 minutes, and the maximum concurrency is
1000. Note that the x-axis is on a logarithmic scale.

Cloud Functions [25], Azure Functions [26], IBM Cloud
Functions [27], and Apache OpenWhisk [28] work in a
similar fashion, but Google Cloud Run [29], OpenFaaS [30],
Kubeless [31], and Fission [32] allow queuing for each server
which renders them incompatible with the performance
model presented in this work.

In this section, we leverage the presented analytical
model to perform what-if analysis and investigate the effect
of changing configurations on service quality metrics and
infrastructure cost indicators. It is worth mentioning that
the analysis presented here have been generated instantly
and at no cost using the performance model, which signifies
the benefits of a tractable and accurate analytical model.

As mentioned earlier in Section 1, current serverless
computing offerings are oblivious to the type of workload
that is being executed on them. One way to tune the server-
less computing platform to the workload being executed
on them is to optimize the expiration threshold, after which
being idle causes the server to be expired and terminated.
Figures 9 to 13 depict the effect of expiration threshold on
different system characteristics for different workloads with
varying warm and cold service times shown in Table 2.
As can be seen, the expiration threshold has a substantial
effect on most system characteristics, where increasing the
expiration threshold would improve the quality of service,
while increasing the infrastructure cost for the serverless
platform provider at the same time. Besides, each workload
might also have different tolerances for latency. However, as
the average response time is the primary quality of service
indicator, we desire to drive down the cost and energy
consumption as much as possible.

Figure 12 shows the average instance count in the warm
pool serving the incoming requests. Assuming the FaaS
provider uses an IaaS provider underneath, we consider
the infrastructure cost for the provider proportional to
the number of instances dedicated to the user’s function
service. Thus, the average instance cost is our estimate
of the provider’s cost for serving the same amount of
workload (since the arrival rate is kept constant). Assuming
the provider will change their pricing proportional to the
infrastructure costs, an estimate of the user’s cost can be
obtained by multiplying the average billed service time
by the price per processing time. Figure 13 shows such a
normalized estimate for the cost inferred by the user. As can

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2020.3033373

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, AUGUST 2020 11

be seen, different workloads have different behaviour when
changing the expiration threshold. For example, consider
workload 4, where increasing the expiration threshold from
1 to 600 causes less than 30% improvement in average
response time, while it increases the user cost by a factor of
10. However, the same change in workload 3 causes major
improvements in average response time while decreasing
the user cost by a factor of more than 5. This shows the
potential savings that can be unlocked by leveraging our
analytical performance model presented and evaluated in
this paper.

TABLE 2
A list of workloads analyzed in this study for potential cost and energy

savings in the serverless computing platform.

Name Application Warm (ms) Cold (ms)

W1 CPU and Disk Intensive
Benchmark [3]

2000 2200

W2 A rang of benchmarks
with different
configuration [33]

300 10000

W3 Startup test with echo on
Apache OpenWhisk [34]

20 1000

W4 Fibonacci calculation on
AWS Lambda [14]

4211 5961

W5 Fibonacci calculation on
Azure Functions [14]

1809 26681

Figure 11 shows the utilization of the instances in the
warm pool for different expiration thresholds values. As de-
fined in this study, utilization shows the average ratio of the
number of running (billed) instances over all instances in the
warm pool. Lower utilization rate causes the creation and
maintenance of more instances, which would increase the
infrastructure costs. As can be seen in Figure 11, increasing
the expiration threshold causes utilization to decrease, while
for many workloads, as shown in Figures 9 and 10, it
wouldn’t lead to a noticeable improvement in the quality
of service. Considering this effect, we see potentials for sub-
stantial savings in infrastructure costs for providers, which
could potentially lead to greener computing and emission
reductions.

Figure 14 shows the probability of rejection by the plat-
form because of reaching the maximum concurrency level.
Such calculations can help the users decide if the serverless
computing platform chosen for their workload can handle
peaks in arrival requests without the need to perform large-
scale and expensive experimentation.

The benefits of our performance model for the serverless
providers are two-fold: 1) They can reduce the operational
costs by optimizing their management via leveraging ana-
lytical performance models, which allows them to decrease
the price of their offerings; 2) They can provide users with
fine-grain control over the cost-performance trade-off by
modifying the expiration threshold underneath. This is mainly
due to the fact that there is no universal optimal point in
the cost-performance trade-off for all workloads. By making
accurate predictions, a serverless provider can better opti-
mize their resource usage while improving the experience
of application developers and consequently, the end-users.

Such degrees of flexibility could also impact the popularity
of the platform among developers. Moreover, utilizing the
performance model proposed here, serverless computing
providers have the chance to incorporate performance-by-
design into their management and operation layers.

On the other hand, the presented model could help
application developers to decide if a given workload can be
deployed on a serverless computing platform while main-
taining their desired Quality-of-Service (QoS) guarantees.
The only measurement needed to characterize a workload
are the average cold and warm start response times, which
could be measured in a straightforward manner. The pre-
sented model would also help developers come up with
appropriate concurrency and memory settings available in
public serverless computing platforms.

5 RELATED WORK

Serverless Computing has attracted a lot of attention from
the research community. However, to the best of authors’
knowledge, no performance model has been proposed that
captures different challenges and aspects unique to server-
less computing platforms. This work is an effort to present
a performance model that captures the complexities of
serverless computing and helps us extract several important
characteristics of the serverless system. Performance and
availability have been listed on the top 10 obstacles towards
the adoption of cloud services [35]. Rigorous models have
been leveraged to analytically model the performance of
various cloud services for IaaS, PaaS, and microservices [6],
[36], [37], [38], [39], [40], [41]. In [36], a cloud data center
is modelled as a classic open network with a single arrival.
Using this modelling, the authors managed to extract the
distribution of the response time, assuming interarrival and
service times are exponential. Using the response time dis-
tribution, the maximum number of tasks and the highest
level of service could be derived. [37] models the cloud
data center as M/M/m/m+r queuing system and derives the
distribution of response time. Assuming the periods are
independent, the response time is broken down to waiting,
service, and execution later on. Khazaei et al. [6], [38], [39],
[40] have proposed monolithic and interactive submodels
for IaaS cloud data centers with enough accuracy and
tractability for large-scale cloud data centers. Qian et al. [41]
proposed a model that evaluates the quality of experience in
a cloud computing system using a hierarchical model. Their
model uses the Erlang loss model and M/M/m/K queuing
system for outbound bandwidth and response time mod-
elling, respectively. Ataie et al. [42] proposed a hierarchical
stochastic model for performance, availability, and power
consumption analysis of IaaS clouds. They utilized Stochas-
tic Reward Nets (SRNs) in their proposed model. Instead
of a large monolithic analytical model, they developed two
approximate SRN models using folding and fixed-point
iteration techniques to enable large-scale modelling of the
cloud system. Chang et al. [43] proposed a hierarchical
stochastic modelling approach for performance modelling
of IaaS cloud data centers under a heterogeneous workload.
They investigated the effects of variation in job arrival rate,
buffer size, maximum vCPU numbers on a PM and VM
size distribution on the quality of service metrics. They

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2020.3033373

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, AUGUST 2020 12

also developed closed-form solutions for key performance
metrics of the system. Malik et al. [44] used High-Level
Petri Nets (HLPNs) for modelling and analysis of VM-based
cloud management platforms. They provided a firm mathe-
matical model and analyzed the structural and behavioural
properties of the system. Tarplee et al. [45] used statistical
programming to find the best set of computing resources to
allocate to the workload in IaaS cloud computing environ-
ments. Their algorithm models the uncertainty in the com-
puting resources and variability in the tasks in a many-task
computing environment. Using their model, reward rate,
cost, failure rate, and power consumption can be optimized
to compute Pareto fronts. Lloyd et al. [46] developed a cost
prediction model for service-oriented applications (SOAs)
deployments to the cloud. Their model can be leveraged
to find lower hosting costs while offering equal or better
performance by using different types and counts of VMs.
In [47], the authors proposed and validated an analytical
performance model to study the provisioning performance
of microservice platforms and PaaS systems operating on
top of VM based IaaS. They used the developed model to
perform what-if analysis and capacity planning for large-
scale microservices. Barrameda et al. [48] proposed a novel
statistical cost model for application offloading to cloud
computing environments. In their work, each module’s cost
is modelled as a random variable characterized by its Cu-
mulative Distribution Function (CDF), which is estimated
through profiling. They achieved an efficient offloading
algorithm based on a dynamic programming formulation.
Their method achieved a prediction error of 5 percent
with sequential and branching module dependencies. Wu
et al. [49] developed a VM launching overhead reference
model for cloud bursting. The cloud bursting module is
designed to enable private clouds to automatically launch
VMs to public clouds when more resources are needed.
Their model helps the decision-making process of when
and where to launch a VM to maximize the utilization
and performance of the system. They verified their model
using FermiCloud, a private cloud for scientific workflows.
Eismann et al. [50] demonstrated the benefits and challenges
that arise in the performance testing of microservices and
how to manage the unique complications that arise while
doing so.

Due to the fact that there is not much information
regarding the management of public serverless offerings,
we can only rely on experimentation and speculations to
gain insights into the serverless offerings. Wang et al. [3]
performed extensive experimentations on the most widely
used serverless computing platforms and compiled their
findings into insights about how each provider is han-
dling the workload introduced to their systems. Figiela et
al. [8] investigated cost, performance, and the life-cycle of
an instance in public serverless offerings by deploying a
benchmark workload on each of them. Their results shed
some light on the management layers of the serverless
offerings, as well as depicting the performance implications
of different management decisions made by providers.

Research has been done to investigate the performance
of serverless computing platforms, but none are offering rig-
orous analytical models that could be leveraged to optimize
the management of the platform. Eyk et al. [51] looked into

the performance challenges in current serverless computing
platforms. They found the most important challenges hin-
dering the adoption of FaaS to be the sizable computational
overhead, unreliable performance, and absence of bench-
marks. The introduction of a reliable performance model for
FaaS offerings could overcome some of these shortcomings.
Kaffes et al. [52] introduced a core-granular and centralized
scheduler for serverless computing platforms. The authors
argue that serverless computing platforms exhibit unique
properties like burstiness, short and variable execution time,
statelessness, and single-core execution. In addition, their
research shows that current serverless offerings suffer from
inefficient scalability, which is also confirmed by Wang et
al. [3]. Manner et al. [14] designed a series of experiments
to investigate the factors influencing the cold start per-
formance of serverless computing platforms. Their exper-
iments on AWS Lambda and Azure Functions show that
factors like the programming language, deployment pack-
age size, and memory settings affect the performance on
serverless computing platforms. In some settings, the cold
start and the warm start had very similar latencies, whereas,
in others, the cold start latency could be significantly larger
than the warm start latency (e.g., Java on Azure). In [9],
Bortolini et al. performed experiments on several different
configurations and FaaS providers in order to find the most
important factors influencing the performance and cost of
current serverless platforms. They found that one of the
most important factors for both performance and cost is the
programming language used. In addition, they found low
predictability of cost as one of the most important draw-
backs of serverless computing platforms. Lloyd et al. [10] in-
vestigated the factors influencing the performance of server-
less computing platforms. They identified four states for the
infrastructure in a serverless computing platform: provider
cold, VM cold, container cold, and warm. Their results show
that the performance of the infrastructure relies heavily
upon the state of the system at the time of arrival. Bardsley
et al. [53] examined the performance profile of AWS Lambda
as an example of a serverless computing platform in a low-
latency high-availability context. They found that although
the infrastructure is managed by the provider, and it is
not visible to the user, the solution architect and the user
need a fair understanding of the underlying concepts and
infrastructure. Pelle et al. [54] investigated the suitability of
serverless computing platforms (AWS Lambda, in particu-
lar) for latency-sensitive applications. Thus, the main focus
in their research was on delay characteristics of the appli-
cation. Their findings showed that there are usually several
alternatives of similar services with significantly different
performance characteristics. They found the difficulty of
predicting the application performance for a given task, one
of the major drawbacks of current serverless offerings. They
also measured the application performance for different
loads, which could possibly be calculated using an analyti-
cal performance model. Hellerstein et al. [55] addressed the
main gaps present in the first-generation serverless comput-
ing platforms and the anti-patterns present in them. They
showed how current implementations are restricting dis-
tributed programming and cloud computing innovations.
The issues of no global states and the inability to address
the lambda functions directly over the network are some of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2020.3033373

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, AUGUST 2020 13

these issues. Eyk et al. [5] found the most important issues
surrounding the widespread adoption of FaaS to be sizeable
overheads, unreliable performance, and new forms of cost-
performance trade-off. In their work, they identified six
performance-related challenges for the domain of serverless
computing and proposed a roadmap for alleviating these
challenges. Balla et al. [56] performed extensive experimen-
tal studies on language runtimes in open source FaaS. They
showed that it is possible to tune some of these runtimes for
better performance, but overall, Go programming language
results in the best median latency with similar functionality
followed by NodeJS and Python.

Li et al. [57] used analytical models that leverage queu-
ing theory to optimize the performance of composite service
application jobs by tuning configurations and resource al-
locations. We believe a similar approach is possible using
the presented analytical model for serverless computing
platforms. Horovitz et al. [58] used machine learning-based
cost and performance optimization to warm-up containers
for future requests. Their results show that proactive man-
agement of serverless computing platforms could reduce
the number of cold starts occurring and thus improve the
quality of service. The new paradigm shift toward using
serverless computing platforms calls for redesigning the
management layer of the cloud computing platforms. To do
so, Kannan et al. [59] proposed GrandSLAm, an SLA-aware
runtime system that aims to improve the SLA guarantees for
function-as-a-service workloads and other microservices.
Lin et al. [12] used a pool of warm containers to mitigate
cold starts in serverless computing platforms. They showed
that even with a warm pool of only one container, we
could decrease the number of cold starts by 85%. Utilizing
a performance model for the proposed serverless platform,
one could gain performance improvements while mitigating
the overhead cost introduced to the system. Gunasekaran
et al. [60] used AWS Lambda alongside VMs to reduce
SLO violations while keeping the cost to a minimum. In
the proposed method, they used serverless computing due
to its fast autoscaling compared to VMs in order to serve
spurious and bursty workloads. Bermbach et al. [13] looked
into the use of application knowledge to reduce the number
of cold starts in FaaS services. They developed a client-
side middleware that analyzes a process and determines the
approximate number and time of requests to later functions
in the process. On average, they were able to mitigate the
number of cold start by 40% in their experiments. Xu et
al. [61] proposed an adaptive warm-up strategy as well as an
adaptive container pool scaling using a time series predic-
tion model that tries to minimize the cold starts in serverless
computing while reducing the waste of container pool based
on the function chain model. An analytical model with the
level of fidelity presented in this work could be leveraged to
optimize the strategies presented in such work with better
reliability characteristics. Akkus et al. [34] used application-
level sandboxing, and hierarchical message buses to speed
up the conventional serverless computing platforms. Their
approach proved to lead to lower latency and better re-
source efficiency as well as more elasticity than current
serverless platforms like Apache OpenWhisk.

6 CONCLUSION

In this work, we presented and evaluated an accurate
and tractable analytical performance model suitable for
analyzing the performance, utilization and cost of current
mainstream serverless computing platforms. We analyzed
the performance implications of different system configura-
tions and workload characteristics of the public serverless
offerings and showed, through experimentation, that the
proposed model could accurately estimate the steady-state
performance of various workloads. We also showed that the
performance model is scalable, which is critical for evalu-
ating large scale deployments. Serverless users can utilize
the presented model to predict the cost and performance
of their application and evaluate the effectiveness of FaaS
for their workloads. Serverless providers can leverage the
presented model to offer an adjustable quality of service
and cost. The presented model also allows savings in cost
and energy through optimization of the infrastructure for
each workload, leading to energy and emission reduction
and allowing the realization of green computing.

In summary, the proposed performance model can trans-
form serverless platforms from “workload-agnostic” envi-
ronments to “workload-aware” adaptive platforms.

ACKNOWLEDGEMENT

This research was enabled in part by support from
Sharcnet (www.sharcnet.ca) and Compute Canada
(www.computecanada.ca). We would also like to thank
Amazon for supporting this research by providing us with
the education credit to access the Amazon Web Services
(AWS).

REFERENCES

[1] Amazon Web Services Inc., “Serverless Computing.” https://aws.
amazon.com/serverless/. Last accessed 2019-07-04.

[2] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, et al.,
“Cloud Programming Simplified: A Berkeley View on Serverless
Computing,” arXiv preprint arXiv:1902.03383, 2019.

[3] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking
Behind the Curtains of Serverless Platforms,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pp. 133–146, 2018.

[4] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini,
“Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider,” arXiv preprint
arXiv:2003.03423, 2020.

[5] E. Van Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann, “A
SPEC RG Cloud Group’s Vision on the Performance Challenges of
FaaS Cloud Architectures,” in Companion of the 2018 ACM/SPEC In-
ternational Conference on Performance Engineering, pp. 21–24, ACM,
2018.

[6] H. Khazaei, J. Misic, and V. B. Misic, “A Fine-Grained Performance
Model of Cloud Computing Centers,” IEEE Transactions on parallel
and distributed systems, vol. 24, no. 11, pp. 2138–2147, 2012.

[7] G. Grimmett, G. R. Grimmett, D. Stirzaker, et al., Probability and
Random Processes. Oxford university press, 2001.

[8] K. Figiela, A. Gajek, A. Zima, B. Obrok, and M. Malawski,
“Performance Evaluation of Heterogeneous Cloud Functions,”
Concurrency and Computation: Practice and Experience, vol. 30, no. 23,
p. e4792, 2018.

[9] D. Bortolini and R. R. Obelheiro, “Investigating Performance and
Cost in Function-as-a-Service Platforms,” in International Confer-
ence on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 174–
185, Springer, 2019.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2020.3033373

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://aws.amazon.com/serverless/
https://aws.amazon.com/serverless/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, AUGUST 2020 14

[10] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless Computing: An Investigation of Factors Influencing
Microservice Performance,” in 2018 IEEE International Conference
on Cloud Engineering (IC2E), pp. 159–169, IEEE, 2018.

[11] N. Mahmoudi, C. Lin, H. Khazaei, and M. Litoiu, “Optimizing
Serverless Computing: Introducing an Adaptive Function Place-
ment Algorithm,” in Proceedings of the 29th Annual International
Conference on Computer Science and Software Engineering, pp. 203–
213, 2019.

[12] P.-M. Lin and A. Glikson, “Mitigating Cold Starts in
Serverless Platforms: A Pool-Based Approach,” arXiv preprint
arXiv:1903.12221, 2019.

[13] D. Bermbach, A. S. Karakaya, and S. Buchholz, “Using Application
Knowledge to Reduce Cold Starts in FaaS Services,” in Proceedings
of the 35th ACM/SIGAPP Symposium on Applied Computing, 2020.

[14] J. Manner, M. Endreß, T. Heckel, and G. Wirtz, “Cold Start In-
fluencing Factors in Function as a Service,” in 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion
(UCC Companion), pp. 181–188, IEEE, 2018.

[15] Google Cloud Platform Inc., “Concurrency.” https://cloud.
google.com/run/docs/about-concurrency. Last accessed 2020-02-
13.

[16] The Knative Authors, “Configuring concurrency.” https://
knative.dev/v0.16-docs/serving/autoscaling/concurrency/. Last
accessed 2020-09-03.

[17] M. Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge University Press,
2013.

[18] G. McGrath and P. R. Brenner, “Serverless computing: Design,
Implementation, and Performance,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW),
pp. 405–410, IEEE, 2017.

[19] S. Bose, “M/G/m/m Loss System,” Prieiga per internet: http://www.
iitg. ac. in/skbose/qbook/MGmm Queue. PDF, 2001.

[20] L. A. Baxter, “Probability, statistics, and queueing theory with
computer sciences applications,” 1992.

[21] W. Whitt, “Continuous-Time Markov Chains,”
http://www.columbia.edu/w̃w2040/6711F13/ CTMCnotes120413.pdf,
2006.

[22] Amazon Web Services Inc., “Serverless Comput-
ing.” https://docs.aws.amazon.com/lambda/latest/dg/
configuration-concurrency.html. Last accessed 2020-02-28.

[23] Mikhail Shilkov, “Cold Starts in AWS Lambda.” https://mikhail.
io/serverless/coldstarts/aws/. Last accessed 2020-03-18.

[24] Amazon Web Services Inc., “AWS Lambda.” https://aws.amazon.
com/lambda/. Last accessed 2020-02-03.

[25] Google Inc., “Cloud Functions.” https://cloud.google.com/
functions. Last accessed 2020-02-03.

[26] Microsoft Inc., “Azure Functions Serverless Compute.” https:
//azure.microsoft.com/en-us/services/functions/. Last accessed
2020-02-03.

[27] IBM Inc., “IBM Cloud Functions.” https://cloud.ibm.com/
functions. Last accessed 2020-02-03.

[28] Apache Software Foundation, “OpenWhisk - Open Source Server-
less Cloud Platform.” https://openwhisk.apache.org/. Last ac-
cessed 2020-02-03.

[29] Google Inc., “Cloud Run.” https://cloud.google.com/run. Last
accessed 2020-02-03.

[30] OpenFaaS Ltd., “OpenFaaS - Serverless Functions Made Simple.”
https://www.openfaas.com/. Last accessed 2020-02-03.

[31] Kubeless Inc., “Kubeless.” https://kubeless.io/. Last accessed
2020-02-03.

[32] Fission Contributors, “Serverless Functions for Kubernetes - Fis-
sion.” https://fission.io/. Last accessed 2020-02-03.

[33] Robert Vojta, “AWS Journey — API Gateway & Lambda & VPC
Performance.” https://link.medium.com/PHevHj8ji4. Last ac-
cessed 2020-02-19.

[34] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck,
P. Aditya, and V. Hilt, “{SAND}: Towards High-Performance
Serverless Computing,” in 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18), pp. 923–935, 2018.

[35] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al., “A View
of Cloud Computing,” Communications of the ACM, vol. 53, no. 4,
pp. 50–58, 2010.

[36] K. Xiong and H. Perros, “Service Performance and Analysis in
Cloud Computing,” in 2009 Congress on Services-I, pp. 693–700,
IEEE, 2009.

[37] B. Yang, F. Tan, Y.-S. Dai, and S. Guo, “Performance Evaluation of
Cloud Service Considering Fault Recovery,” in IEEE International
Conference on Cloud Computing, pp. 571–576, Springer, 2009.

[38] H. Khazaei, J. Misic, and V. B. Misic, “Modelling of Cloud
Computing Centers using M/G/m Queues,” in 31st International
Conference on Distributed Computing Systems Workshops, pp. 87–92,
IEEE, 2011.

[39] H. Khazaei, J. Misic, and V. B. Misic, “Performance Analysis of
Cloud Computing Centers using M/G/m/m + r Queuing Sys-
tems,” IEEE Transactions on parallel and distributed systems, vol. 23,
no. 5, pp. 936–943, 2011.

[40] H. Khazaei, J. Misic, and V. B. Misic, “Performance Analysis of
Cloud Centers under Burst Arrivals and Total Rejection Policy,”
in IEEE Global Telecommunications Conference-GLOBECOM, pp. 1–6,
IEEE, 2011.

[41] H. Qian, D. Medhi, and K. Trivedi, “A Hierarchical Model to
Evaluate Quality of Experience of Online Services Hosted by
Cloud Computing,” in 12th IFIP/IEEE International Symposium on
Integrated Network Management (IM) and Workshops, pp. 105–112,
IEEE, 2011.

[42] E. Ataie, R. Entezari-Maleki, L. Rashidi, K. S. Trivedi, D. Ardagna,
and A. Movaghar, “Hierarchical Stochastic Models for Perfor-
mance, Availability, and Power Consumption Analysis of IaaS
Clouds,” IEEE Transactions on Cloud Computing, 2017.

[43] X. Chang, R. Xia, J. K. Muppala, K. S. Trivedi, and J. Liu, “Effective
Modeling Approach for IaaS Data Center Performance Analysis
under Heterogeneous Workload,” IEEE Transactions on Cloud Com-
puting, vol. 6, no. 4, pp. 991–1003, 2016.

[44] S. U. Malik, S. U. Khan, and S. K. Srinivasan, “Modeling and Anal-
ysis of State-of-the-Art VM-Based Cloud Management Platforms,”
IEEE Transactions on Cloud Computing, vol. 1, no. 1, pp. 1–1, 2013.

[45] K. M. Tarplee, A. A. Maciejewski, and H. J. Siegel, “Robust
Performance-Based Resource Provisioning using a Steady-State
Model for Multi-Objective Stochastic Programming,” IEEE Trans-
actions on Cloud Computing, 2016.

[46] W. J. Lloyd, S. Pallickara, O. David, M. Arabi, T. Wible, J. Ditty,
and K. Rojas, “Demystifying the Clouds: Harnessing Resource
Utilization Models for Cost Effective Infrastructure Alternatives,”
IEEE Transactions on Cloud Computing, vol. 5, no. 4, pp. 667–680,
2015.

[47] H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu, “Ef-
ficiency Analysis of Provisioning Microservices,” in 2016 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom), pp. 261–268, IEEE, 2016.

[48] J. Barrameda and N. Samaan, “A Novel Statistical Cost Model
and an Algorithm for Efficient Application Offloading to Clouds,”
IEEE Transactions on Cloud Computing, vol. 6, no. 3, pp. 598–611,
2015.

[49] H. Wu, S. Ren, G. Garzoglio, S. Timm, G. Bernabeu, K. Chadwick,
and S.-Y. Noh, “A Reference Model for Virtual Machine Launching
Overhead,” IEEE Transactions on Cloud Computing, vol. 4, no. 3,
pp. 250–264, 2014.

[50] S. Eismann, C. P. Bezemer, W. Shang, D. Okanović, and A. van
Hoorn, “Microservices: A Performance Tester’s Dream or Night-
mare?,” in Proceedings of the 2020 ACM/SPEC International Confer-
ence on Performance Engineering (ICPE ’20), 2020.

[51] E. van Eyk and A. Iosup, “Addressing Performance Challenges in
Serverless Computing,” in Proc. ICT. OPEN, 2018.

[52] K. Kaffes, N. J. Yadwadkar, and C. Kozyrakis, “Centralized Core-
Granular Scheduling for Serverless Functions,” in Proceedings of
the ACM Symposium on Cloud Computing, pp. 158–164, 2019.

[53] D. Bardsley, L. Ryan, and J. Howard, “Serverless Performance and
Optimization Strategies,” in 2018 IEEE International Conference on
Smart Cloud (SmartCloud), pp. 19–26, IEEE, 2018.

[54] I. Pelle, J. Czentye, J. Dóka, and B. Sonkoly, “Towards Latency
Sensitive Cloud Native Applications: A Performance Study on
AWS,” in 2019 IEEE 12th International Conference on Cloud Com-
puting (CLOUD), pp. 272–280, IEEE, 2019.

[55] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing:
One step forward, two steps back,” arXiv preprint arXiv:1812.03651,
2018.

[56] D. Balla, M. Maliosz, C. Simon, and D. Gehberger, “Tuning Run-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2020.3033373

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://cloud.google.com/run/docs/about-concurrency
https://cloud.google.com/run/docs/about-concurrency
https://knative.dev/v0.16-docs/serving/autoscaling/concurrency/
https://knative.dev/v0.16-docs/serving/autoscaling/concurrency/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://mikhail.io/serverless/coldstarts/aws/
https://mikhail.io/serverless/coldstarts/aws/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://cloud.google.com/functions
https://cloud.google.com/functions
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.ibm.com/functions
https://cloud.ibm.com/functions
https://openwhisk.apache.org/
https://cloud.google.com/run
https://www.openfaas.com/
https://kubeless.io/
https://fission.io/
https://link.medium.com/PHevHj8ji4

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, AUGUST 2020 15

times in Open Source FaaS,” in International Conference on Internet
of Vehicles, pp. 250–266, Springer, 2019.

[57] X. Li, S. Liu, L. Pan, Y. Shi, and X. Meng, “Performance Analysis
of Service Clouds Serving Composite Service Application Jobs,” in
2018 IEEE International Conference on Web Services (ICWS), pp. 227–
234, IEEE, 2018.

[58] S. Horovitz, R. Amos, O. Baruch, T. Cohen, T. Oyar, and A. Deri,
“FaaStest-Machine Learning Based Cost and Performance FaaS
Optimization,” in International Conference on the Economics of Grids,
Clouds, Systems, and Services, pp. 171–186, Springer, 2018.

[59] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and
L. Tang, “Grandslam: Guaranteeing SLAs for Jobs in Microservices
Execution Frameworks,” in Proceedings of the Fourteenth EuroSys
Conference 2019, pp. 1–16, 2019.

[60] J. R. Gunasekaran, P. Thinakaran, M. T. Kandemir, B. Urgaonkar,
G. Kesidis, and C. Das, “Spock: Exploiting Serverless Functions
for SLO and Cost Aware Resource Procurement in Public Cloud,”
in 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD), pp. 199–208, IEEE, 2019.

[61] Z. Xu, H. Zhang, X. Geng, Q. Wu, and H. Ma, “Adaptive Function
Launching Acceleration in Serverless Computing Platforms,” in
2019 IEEE 25th International Conference on Parallel and Distributed
Systems (ICPADS), pp. 9–16, IEEE, 2019.

Nima Mahmoudi received the BS degrees in
Electronics and Telecommunications and the MS
degree in Digital Electronics from Amirkabir Uni-
versity of Technology, Tehran, Iran in 2014, 2016,
and 2017 respectively. He is currently working
towards the PhD degree in software engineer-
ing and intelligent systems at the University of
Alberta, Edmonton, AB, Canada. He is a Re-
search Assistant at the University of Alberta and
a visiting Research Assistant in the Performant
and Available Computing Systems (PACS) lab at

York University, Toronto, ON, Canada. His research interests include
serverless computing, cloud computing, performance modelling, applied
machine learning, and distributed systems. He is a student member of
the IEEE.

Hamzeh Khazaei (Member, IEEE) is an assis-
tant professor in the Department of Electrical
Engineering and Computer Science at York Uni-
versity. Previously he was an assistant professor
at the University of Alberta, a research associate
at the University of Toronto and a research sci-
entist at IBM, respectively. He received his PhD
degree in Computer Science from the University
of Manitoba, where he extended queuing theory
and stochastic processes to accurately model
the performance and availability of cloud com-

puting systems. His research interests include performance modelling,
cloud computing and engineering distributed systems.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2020.3033373

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

