
xx

Optimizing the Performance of Containerized Cloud
Software Systems using Adaptive PID-Controllers

MIKAEL SABUHI AND NIMA MAHMOUDI, Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, Canada
HAMZEH KHAZAEI, Department of Electrical Engineering and Computer Science, York University,
Toronto, Canada

Control theory has proven to be a practical approach for the design and implementation of controllers, which
does not inherit the problems of non-control theoretic controllers due to its strong mathematical background.
State of the art auto-scaling controllers suffer from one or more of the following limitations: 1) lack of a
reliable performance model, 2) using a performance model with low scalability, tractability or fidelity, 3)
being application or architecture-specific leading to low extendability and 4) no guarantee on their efficiency.
Consequently, in this paper, we strive to mitigate these problems by leveraging an adaptive controller, which
is comprising of a neural network as the performance model and a PID controller as the scaling engine. More
specifically, we design, implement and analyze different flavours of these adaptive and non-adaptive controllers,
compare and contrast them against each other to find the most suitable one for managing containerized cloud
software systems at runtime. The controller’s objective is to maintain the response time of the controlled
software system in a pre-defined range, and meeting the Service Level Agreements (SLA) while leading to
efficient resource provisioning.

CCS Concepts: • Computing methodologies → Modeling methodologies; • Computer sys-
tems organization → Availability; • Software and its engineering → Cloud computing.

Additional Key Words and Phrases: Control Theory, Cloud Software System Adaptation, Auto-Scaling,
Adaptive PID Controller, Neural Networks, Performance Analysis.
ACM Reference Format:
Mikael Sabuhi and Nima Mahmoudi and Hamzeh Khazaei. 2021. Optimizing the Performance of Containerized
Cloud Software Systems using Adaptive PID-Controllers. ACM Trans. Autonom. Adapt. Syst. xx, xx, Article xx
(x 2021), 27 pages. https://doi.org/xx.xxxx

1 INTRODUCTION
Modern distributed systems need to have robust mechanisms for dealing with changes in their
performance in order to be responsive and cost-effective at the same time. This is mainly due to the
stochastic nature of the underlying infrastructure’s performance, variable workload, and possible
failures common in the current complex computing systems. Therefore, the modern distributed
systems need to have self-adaptive capabilities to sense the changes in the environment and react
accordingly. Various methods have been proposed to address and implement this [2, 4, 35, 56, 57],
but there has been very limited research on using control-theory-based solutions.

Authors’ addresses: Mikael Sabuhi and Nima Mahmoudi Department of Electrical and Computer Engineering, University of
Alberta, Edmonton, Canada, {sabuhi,nmahmoud}@ualberta.ca; Hamzeh Khazaei Department of Electrical Engineering and
Computer Science, York University, Toronto, Canada, hkh@yorku.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1556-4665/2021/x-ARTxx $15.00
https://doi.org/xx.xxxx

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

https://doi.org/xx.xxxx
https://doi.org/xx.xxxx

xx:2 M. Sabuhi et al.

Control theory has been the go-to approach for many adaptable systems, especially in physical
systems due to its predictability, mathematical guarantees, and effectiveness. To use control-theory-
based approaches in managing the performance of large-scale software systems effectively, we
need accurate performance models of the computing software system [12]. However, building
models with acceptable accuracy has proven to be lengthy and error-prone for the modern complex
distributed systems [13, 34, 36, 37]. This has led to the current ad-hoc control theoretical solutions
which are application-specific and not proven to be extendable for other systems [5, 54].

In this work, we plan to leverage neural networks to design an adaptive performance model
that can maintain optimized performance for containerized cloud software systems. Our proposed
solution leverages the guarantees and robustness associated with control theoretical approaches.
We evaluate our approach in various settings for a generic three-tier containerized application that
has been deployed on Google Cloud Platform (GCP). The control objective is achieved by scaling
the number of containers in the application tier. Moreover, we shed some light on the control
theory’s applicability in designing performant software systems. More specifically, we address the
following research questions:

• RQ1: Can we use Neural Networks to build a reliable performance model for designing control-
theoretical adaptive auto-scalers?
Designing performancemodels for large-scale distributed systems that maintain an acceptable
trade-off between tractability and fidelity is a very challenging task [36, 37]. In this work,
we aim to evaluate if Neural Networks can be used to design a tractable performance model
with a high degree of fidelity and extendability.
• RQ2:Which type of controllers can effectively maintain the performance and metrics of interest,
i.e., Service Level Agreement, Mean Squared Error, and Mean Absolute Error in software systems?
Several run-time indicators are considered to see which controller is capable of maintaining
the system’s response time in the desired operating region with fewer violations. We designed
and evaluated fixed PI/PID controllers and adaptive PI/PID counterparts to investigate this
question. We compare these controllers to find the most suitable one for distributed software
systems.
• RQ3:Which controller can handle the task of resource provisioning more efficiently?
In this case, we strive to find out which controller can make the best use of the available
resources (in our case containers). The goal is to use the resources as it is necessary without
over/under-provisioning. To this end, the performance of the proposed adaptive PI and PID
controllers are compared against their non-adaptive counterparts as well as a pure reactive
(Scaling Heat Algorithm [12]) algorithm by considering two different workloads.

The remainder of this paper is organized as follows. Section 2 discusses the background concepts
for this paper. Section 3 introduces and compares the relatedwork in the literature. Section 4 presents
our novel control-theory-based methodology. Section 5 outlines our evaluation methodology for
the approaches presented in this work. Section 5.3 discusses the results obtained in our evaluation.
In Section 6, we tried to identify the most important threats to our work’s validity as well as some
avenues for future research. Finally, Section 7 concludes the paper.

2 BACKGROUND
In this section, we briefly introduce the important concepts that are being used in this paper, namely,
container virtualization and control theory.
Docker containers provide us with a lightweight and low overhead solution to implement

containerized application and the well known microservice architectures [47]. Their fast startup

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

Optimizing the Performance of Containerized Cloud Software Systems using Adaptive PID-Controllers xx:3

enables us to perform rapid-scaling actions, both horizontal and vertical, compared to other solutions
like virtual machines.
Cluster management platforms like Kubernetes [28], Mesos [48], and Swarm [20] allow the

software system to be deployed and reconfigured at large scale. These orchestrators provide the
deployment team with the ability to configure the software without worrying about the underlying
infrastructure. These platforms also contain simple reactive auto-scaler units for the deployed cloud
application out of the box.
As shown in Figure 1, in the context of control theory, each control system consists of several

blocks, e.g., sensor, actuator, feedback controller, and system under control. We briefly explain each
of these elements.
• Control Objective: refers to the control system’s purpose. For example, it could be controlling
the average response time of the controlled system to be less than t seconds or lay in a
pre-defined range.
• Set-Point: represents the desired value for the output of the controlled system. For instance,
the set point for average response time could be 1000 ms. Note that the set point could be a
range as well.
• Sensor: refers to a component that enables us read the system output, or in our case, the
performance variables. For example, average response, fail ratio, queue length, etc. In fact, it
is a software component used for monitoring the controlled system, e.g., Locust and Jmeter.
• Error : denotes the difference between the set-point and the measured value of the output read
by the sensor, representing the deviation from the desired value for the control objective.
• Control Signal: represents the value computed by adopting a specific controller with regards
to the error, e.g., having a 400 ms error, the controller might signal for creating two more
containers.
• Controller : describes a mechanism or algorithm that calculates the control signal to achieve
the required control objective, considering the error value. We refer to this algorithm as the
control law.
• Actuator : refers to a mechanism that can be used to affect the controlled system. For instance,
the number of Virtual Machines or containers.
• System Under Control: denotes a system to be controlled by adjusting the actuator(s). For
example, a containerized cloud application as a system that its control objective is met by
creating/removing replicated containers.

Fig. 1. Block diagram of a simple control-theoretical feedback loop.

The Proportional-Integral-Derivative (PID) controller, also known as “three term” controller [3],
still is the most popular controller in the industry due to its simplicity and transparency. The control

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

xx:4 M. Sabuhi et al.

signal of the continuous-time PID controller is described as follows; please note that in this study
we used discrete-time form of the PID controller (discussed in Section 4.2) and this continuous-time
form is discussed here only due to its simplicity:

𝑢 (𝑡) = 𝐾𝑃𝑒 (𝑡) + 𝐾𝐼

∫ 𝑡

0
𝑒 (𝑡) + 𝐾𝐷

𝑑𝑒 (𝑡)
𝑑𝑡

(1)

Where𝑢 (𝑡) is the control signal calculated by the controller, 𝑒 (𝑡) is the current error, and𝐾𝑃 denotes
the proportional gain, 𝐾𝐼 the integral gain, and 𝐾𝐷 the derivative gain. The purpose of each of
these gains are described as follows [3]:
• Proportional Gain 𝐾𝑃 : shows the sensitivity of the control system to the current error.
• Integral Gain 𝐾𝐼 : shows the sensitivity of the control system to past errors. Integral term acts
as a low-frequency compensator to reduce the steady-state error.
• Derivative Gain𝐾𝐷 : shows the sensitivity of the control system to the future trend of the error.
Derivative term acts as a high-frequency compensator to improve the transient behaviour of
the system.

In order to tune the aforementioned PID controller parameters, interested readers are encouraged
to refer to [3] for a thorough overview of 𝑃𝐼𝐷 controllers and their tuning methods.

3 RELATEDWORK
In this section, we discuss the prior work related to our study of optimizing the performance

of containerized software systems using adaptive PID-controllers. In particular, we discuss the
related work on performance modelling of cloud software systems, non-adaptive and adaptive
control-theoretical methods for auto-scaling.

3.1 Cloud Software System Performance modelling
Performance unpredictability and responsive auto-scaling of the cloud applications are listed in
the top 10 obstacles for adopting the cloud [8]. Xiong et al. [60] present a novel approach for
studying computer service performance in cloud computing. To fulfill the Quality of Service (QoS)
guaranteed services in such a computing environment, they seek to find the relationship among the
maximum number of users, the minimal service resources, and higher service levels. The authors
introduce a queuing network model and then use an approximation method to compute the Laplace
transform of a response time distribution. Moreover, they model the Web server and service center
as an infinite queue for single-class customers.
Qian et al. [52] propose a hierarchical modelling approach to analytically evaluate Quality of

Experience (QoE) of Online Service providers (OSPs) who are using cloud environments. They use
four sub-models, namely an outbound bandwidth model, a cloud computing availability model, a
latency model, and a cloud computing response time model. These sub-models are combined into
one whole model using a redirection strategy graph. Their proposed approach is suitable for endless
interactions in this environment. Moreover, one can easily change these identified sub-models and
also add other sub-models to the existing model.
Khazaei et al. [38] put forth an analytical model for performance evaluation of cloud server farms.
The authors model a cloud server farm as a 𝑀/𝐺/𝑚 queuing system, considering it a Markov
process. Then, they employ embedded Markov chain techniques to analyze the performance of
the cloud server farms and verify its accuracy. In their follow-up study [39], they describe a new
approximate analytical model based on the Markov chain model for performance evaluation of
cloud server farms. The model determines the relationship between the number of servers and input
buffer size with performance metrics such as the mean number of tasks in the system, blocking
probability, and the probability that a task will obtain immediate service as well as response

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

Optimizing the Performance of Containerized Cloud Software Systems using Adaptive PID-Controllers xx:5

time distribution characteristics. In another study [40], the authors introduce a performance
model suitable for analyzing large-sized Iaas clouds’ service quality, using interacting stochastic
models. They leverage both analytical and simulation modelling to address the complexity of cloud
computing systems. Their proposed model fuses cloud centers’ important characteristics such as
batch arrival of user requests, resource visualization, and realistic servicing steps to obtain the
important performance indicators such as task blocking probability and total waiting time incurred
on user requests. Also, cloud centers’ performance with a high degree of virtualization and Poisson
batch task arrivals is evaluated in [41]. The proposed model is based on a two-stage approximation
technique where first, they model the non-Markovian process with an embedded semi-Markov
process, which is then modelled by an embedded Markov process but only at the time instants of
super-task arrivals.
Malik et al. [46] provide an in-depth analysis, modelling, and verification of some of the open-source
state-of-art VM-based cloud management platforms. They leverage high-level Petri nets (HLPN)
to model and assess the software systems’ structural and behavioural characteristics with the
advantage of providing firm mathematical representations. The authors verified the models using
SMT-Lib and Z3 solvers.
Chang et al.[15] highlight the fact that the heterogeneity of the workload in real Iaas Cloud Data
Centers (CDCs) makes the performance modelling of complicated Iaas CDCs a challenging task.
Their study studies a situation in which the number of virtual CPUs requested by each customer
job is different. They present a hierarchical stochastic modelling approach for performance analysis
of CDCs to quantify the impact of variation in job arrival rate, buffer size, and the maximum vCPUs
numbers on the cloud service quality.
Shekhar et al. [53] present an online data-driven approach that leverages Gaussian Process-Based
machine learning techniques to build run-time predictive models of the performance of the system
under different interference intensity. This model can adapt itself to the changes in the workload.
The reason for selecting Gaussian Process to model the latency variations due to varying workload
is that these types of models require a small number of hyperparameters, and also they can model
the non-linear behaviour of the target system. However, these models are probabilistic, and Then
they use this model to make run-time decisions for vertical scaling of the resources.

3.2 Non-adaptive Control Theoretical Auto-Scaling
Gergin et al. [25] propose a decentralized autonomic architecture based on a fixed PID controller for a
n-tier application. They implemented the proposedmethod on a custom dataminingweb application
based on the FIFA 1998 Workload. For this three-tier application, three separate PID controllers
control the number of Virtual Machines (VMs) for each tier to maintain the corresponding CPU
utilization at a constant value. Another interesting study Barna et al. [11], evaluates the performance
of a non-adaptive PID controller in maintaining the desired behaviour for a web application on
SAVI as the private and Amazon EC3 as the public cloud provider. The controller has been tuned
manually by trial and error, and the control objective of this controller is to keep the CPU utilization
within a specific range.

The problem of control granularity and decoupled control is discussed in [44]. They point out
that most of the available cloud controllers function without direct knowledge about the cloud
software system behaviour and performance metrics.
Control theory based adaptation using a Fixed PI controller is evaluated and compared with

the threshold-based and model-based method in [24]. Introducing smooth and sharp variations
in the cloud application workload, these three controllers’ performance in maintaining the CPU
utilization around 70% is evaluated on a minimal three-tier web application. Looking into results

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

xx:6 M. Sabuhi et al.

from an efficiency and effectiveness perspective, the PI controller exhibits better resource utilization
and faster settling time and rise time.

3.3 Adaptive Control Theoretical Auto-Scaling
Several studies on adaptive controllers have been carried out; for example, a vertical elastic controller
for memory is presented in [22] along with a method for error smoothing. The control actuator is
the memory size allocation, and the target is to maintain the desired response time.
To handle the capacity shortage in cloud infrastructure, the brownout concept is extended

from electrical grids to cloud software systems in [43]. During high load, brownout downgrades
the user experience, e.g., by decreasing the optional content to be served (i.e., dimmer value); in
doing so, the Service Level Objective (SLO) can be maintained. Brownout-compliant applications
help support more users and consume less resources while satisfying the SLO. An adaptive PI
controller is synthesized for coping with changes in the number of users and the environment.
There are several studies on brownout-compliant cloud software systems. For example, Maggio et
al. [45] study the applicability of adaptive PI, adaptive deadbeat, adaptive PID, and Feedforward-
feedback controllers on Brownout compliant systems. The performance of these controllers against
changes in application requirements and resource availability is evaluated. The results of this
work indicate that the feedforward-feedback controller has better performance while requiring
significant engineering effort. Therefore, since the adaptive PID controller is simpler to implement,
it’s a preferable choice.

Event-based application brown-out as an improved approach to brown-out is presented in [19]
based on the queue-length of pending requests. In this study, improvement in control objectives is
reported combining PI controller with machine learning algorithms. Moreover, Nydlander et al. [49]
improve this event-based control by proposing a more accurate model of brown-out applications
using queuing theory. Quantitative comparison for the proposed cascade controller with original
Brown-out and event-based brown-out shows that better performance is achieved by having two
control levels: one for the inner-loop and one for the outer-loop. The flexibility of control theory in
dealing with software systems is undeniable; one can find interesting adaptive controllers designed
using brown-out for load balancing strategies, e.g. [21, 51].
Baresi et al. [10] enumerate the benefits of containerizing the applications and investigates

the performance of auto-scaling in both container and Virtual Machine level. They extend the
EcoWare [9] framework to achieve compatibility with containerized applications and then develop
an autonomic control theoretical approach for auto-scaling of a cloud application. A new dynamic
model for the controlled system is presented to model the application’s response time as a function
of assigned cores and request rate.
To address the incompatibility of the non-functional software models derived from the archi-

tectural description of the software with control theoretical approaches, Arcelli et al. [6] use the
Modelica library to represent a Queuing Network. This library provides some adjustable parameters
for controlling the behaviour of the cloud software system. Moreover, Model Identification Adaptive
Controller(MIAC) based on the layered queuing model and optimal control is presented in [14]. This
non-linear model is linearized around the operating point to tune the optimal controller parameter.
Moreover, Incerto et al. [32] propose a control algorithm for horizontal and vertical auto-scaling of
a cloud software system based on Model Predictive Control(MPC) strategy is presented. In this
study, they consider a compact approximate representation of queuing networks based on ordinary
differential equations(ODEs) to meet the performance requirements by the model predictive con-
troller. However, the authors point out that the only technical limitation of their proposed method
is the single class assumption in the QN model, which they address this limitation in their follow
up paper [33].

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

Optimizing the Performance of Containerized Cloud Software Systems using Adaptive PID-Controllers xx:7

Several comprehensive surveys on the application of control theoretical methods are found in
the recent literature. Ullah et al. [58] look into available methods from both control solution view
and elasticity view and review available work on control theoretical methods for cloud application
elasticity and outlines the existing challenges and trends in adopting such methods. Filieri et
al. [23] review and elaborate on the current control strategies for self-adaptive software systems
starting from goal identification to the verification and validation of the controlled system and at
the end, highlight the open challenges, both from the software engineering and the control theory
perspective. Moreover, a systematic literature review on control theoretical software adaptation
has been presented in [55].
Considering the previous studies on this area, we found that the most challenging problem in

adopting control theory in cloud software system adaptation is modelling the software systems.
According to previous studies in this area, researchers propose various modelling methods for
software systems, such as using queuing networks, to make their auto-scaler adaptive to the
environment’s changes. However, modelling such highly stochastic and nonlinear systems,e.g.,
cloud applications, is a painstaking and costly task and requires a significant engineering effort.
Therefore, in this paper, we propose an approach for data-driven modelling of the software systems
leveraging neural networks due to the performance data’s abundance. To evaluate our proposed
method in RQ1, we investigate the possibility of using neural networks for reliable performance
modelling of cloud applications. Moreover, in RQ2 and RQ3, we evaluate the performance of the
proposed performance modelling method along with an adaptive controller in maintaining the
control objectives and from an efficiency point of view.

4 METHODOLOGY
In this section, we go over the details of the methodology proposed in this paper.

4.1 Performance Modelling
The inherent nature of the cloud software systems exhibits some non-linear behaviours at run-time.
Modelling such systems is a non-trivial task and sometimes impossible due to the complexity of the
non-linear systems. Nevertheless, due to the constant changes in the cloud environment, this model
will not accurately represent the system after a while. Linear approximation of these non-linear
models only works around the operating point and will not be valid if any significant changes
occur in the system’s operating point. Considering all these problems, we attempt to develop a new
approach for modelling cloud software systems and further adjusting it to its environment changes.
Due to the abundance of the data, we propose a data driven approach to obtain a non-linear model
of the cloud software system.
The neural networks can be a convenient solution to tackle the problems mentioned above.

According to the universal approximation theorem [18, 31], we can use a feed-forward network
with a linear output layer and at least one hidden layer with some specific activation functions,e.g.
logistic sigmoid functions, to approximate any function provided that the enough hidden layers and
neurons are given [26]. Several modelling approaches are developed and validated in [50]. Most of
these modelling approaches are performed on the electrical and physical systems. For instance, [1]
uses Recurrent High-Order Neural Networks (RHONN) for real-time discrete non-linear modelling
of an induction motor. A neural network-based non-linear auto-regressive moving average with
exogenous inputs for modelling a piezoelectric actuator has been presented in [17]. These studies
motivated us to carry out some experiments to examine neural networks’ applicability for modelling
cloud software systems. Here, we formalize Hypothesis 1 to obtain the performance model for
cloud applications.
Hypothesis 1. In any situation, the performance of a containerized cloud application is a non-linear

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

xx:8 M. Sabuhi et al.

function of the number of requested containers, the number of successfully provisioned containers,
and the number of users with some time-delays.

𝑦 (𝑛 + 1) =𝑓 (𝑢 (𝑛), ..., 𝑢 (𝑛 − 𝑛𝑢),
𝑧 (𝑛), ..., 𝑧 (𝑛 − 𝑛𝑧), 𝑑 (𝑛), ..., 𝑑 (𝑛 − 𝑛𝑑))

(2)

where𝑦 is the response time, 𝑓 is the non-linear function,𝑢 is the number of requested containers,
𝑧 is the number of running containers, 𝑑 is the number of users and 𝑛 is the discrete time index.

4.1.1 Neural Networks. Neural Networks are employed extensively for system identification due to
their satisfactory performance in non-linear dynamic systemmodelling [16]. In this work, we use the
Multi-Layer Perceptron (MLP) as a feed-forward neural network for system identifications. Figure 2
shows the proposed architecture of the MLP neural network. For simplicity, only one hidden layer
is considered.
The first layer is the input layer, the second layer is the hidden layer, and the last one is the

output layer. We use hyperbolic tangent as the activation function for the hidden layer, and the
output layer is a linear function.

According to Figure 2, the input vector for the Neural Network is:
𝑥𝑖 (𝑛) =(𝑢 (𝑛), ..., 𝑢 (𝑛 − 𝑛𝑢),

𝑧 (𝑛), ..., 𝑧 (𝑛 − 𝑛𝑧), 𝑑 (𝑛), ..., 𝑑 (𝑛 − 𝑛𝑑))
(3)

Where in our case, 𝑢, 𝑧, 𝑑, and 𝑛 are the number of requested containers, number of running
containers, number of users, and discrete-time index, respectively. Also, 𝑛𝑢, 𝑛𝑧 , and 𝑛𝑑 denote the
corresponding time delay for each of these inputs.

The cost function for the system identification purpose is defined as:

𝐽 = (𝑦 (𝑛 + 1) − 𝑦 (𝑛 + 1))2 = 1
2
(𝑒𝑚 (𝑛 + 1))2 (4)

where 𝑦 (𝑛 + 1) represents the measured output, 𝑦 (𝑛 + 1) is the predicted output, and 𝑒 (𝑛 + 1) is the
prediction error.

The system identification procedure is required to obtain the sensitivity of the system’s output to
the change in control input, which is the number of requested containers in our case. The Jacobian
of the system can be derived as follows:

𝜕𝑦 (𝑛 + 1)
𝜕𝑢 (𝑛) ≈

𝜕𝑦 (𝑛 + 1)
𝜕𝑢 (𝑛) (5)

Data-driven system identification comprises two stages: 1) data collection and 2) model training
and verification. In the following subsection, we discuss the best practices to collect the appropriate
data for better system identification.

4.1.2 Data Collection. Data collection is an indispensable part of data-driven system identification,
and the resultant performance of the modelling highly depends on the quality of the acquired
data. System identification can be carried out in an offline/online manner. Most of the time, it is
preferable to train the neural networks model online. However, this requires a high sampling rate.
Since the monitoring systems for cloud software systems suffer from a low sampling rate, we are
bound to first use some offline data for pre-training, and then do further online training at run-time
to adapt the model to the changes in application or underlying infrastructure. Hence, we have a
model that can be used in a highly dynamic environment. To this end, we have collected offline
data from a cloud software system as our system under study to be identified for about 48 hours
and with a sample rate of 20 seconds. To acquire meaningful data from the system, it is crucial to

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

Optimizing the Performance of Containerized Cloud Software Systems using Adaptive PID-Controllers xx:9

Fig. 2. The structure of the proposed neural network for modelling the behaviour of the cloud software
system.

monitor the system’s behaviour in most system states. Furthermore, we can apply the data logged
in the cloud monitoring system’s repository for identification purposes. One can find an example
of data logging module in our online repository1.

Fig. 3. The overall structure of the identification and control of a cloud application, red arrows on the Neural
Network model and PID controller blocks indicate the online adaptation of these blocks.

4.1.3 Model Training. In this section, we use data collected in the data collection phase (refer
to Section 4.1.2) to obtain the performance model. A multi-layer perceptron with one hidden layer
1https://github.com/pacslab/NNPIDAutoscaler

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

https://github.com/pacslab/NNPIDAutoscaler

xx:10 M. Sabuhi et al.

(a) Measurement vs estimated value from the trained model.

(b) The dynamics of workload and the number of running containers during the
off-line training.

Fig. 4. Training the neural network before activating the adaptive controller. During this time, the system
uses a pure reactive auto-scaler to bring the adaptive controller up to speed.

containing 40 neurons is adopted for this purpose. According to Equation (3), the input vector
consists of two-time delays for 𝑢, 𝑧, and 𝑑 , i.e., 𝑛𝑢 = 𝑛𝑧 = 𝑛𝑑 = 2. Therefore, the input vector is a
nine-by-one vector. The number of time delays is obtained from observations in data. The number
of neurons, hidden layers and time delays depends on the non-linearity of the target software
system. The more non-linear the system, the more neurons and deeper architecture are needed.
Therefore, we selected the number of neurons and hidden layers after several manual training
and finding the best fit. These numbers depend on the non-linearity of the target software system.
We tried to use the simplest model since increasing the number of neurons, and hidden layers
may result in the problem of overfitting and computational overhead. Our goal is to model the
non-linear behaviour of the cloud software system with these nine inputs for the next time step.
In order to train the model, 67% of the dataset is used for training and 33% for the validation.

In the pre-processing step, we scaled the input data to the range 0 to 1 according to the Min-Max
scaling algorithm, to prevent the neural network model from saturating. We used Adam Optimizer
to train the weights and biases of the neural network with a training rate of 𝜂 = 0.002, 𝛽1 = 0.99,
𝛽2 = 0.9, and 𝜖 = 1𝑒 − 8 which are the default training values for the optimizer [42]. We set the
batch size to 32 and the training epoch to 10000. We executed the model training five times.
Now, we can respond to RQ1. Figure 5 shows the distribution of the evaluation metrics for

performance modelling in the training and validation stages. In our offline training phase, our
neural network showed a Mean Squared Error (MSE) of 5931.20 and 8248.60, a Mean Absolute Error
(MAE) of 42.34 and 71.57, and a Mean Absolute Percentage Error (MAPE) of 5.96% and 11.278% for
the training set and the validation set, respectively. This is while the average response time in our
training set is 667.79 ms, with a variance of 187,480.34.

The root cause of the reportedmodelling errors can be due to a lack of sufficient and representative
data or an appropriate regularization in the model.
Considering the variations in the data and the obtained evaluation metrics from the model,

our neural network provides acceptable predictions during the training and evaluation phases for

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

Optimizing the Performance of Containerized Cloud Software Systems using Adaptive PID-Controllers xx:11

Fig. 5. Distribution of the evaluation metrics for performance modelling in the training and validation stages.

an extremely stochastic system. The training set and validation set results show that the neural
network is not over-fitting to the training set during our training.

4.2 Controller Design
In this paper, we opted to use the adaptive PID controller’s incremental version, which is available
at our online repository 2. In this scheme, the error signal for the controller is defined as follows
and is shown in Figure 3:

𝑒𝑡 (𝑛 + 1) = 𝑦𝑑𝑒𝑠 (𝑛 + 1) − 𝑦 (𝑛 + 1) (6)

where 𝑦𝑑𝑒𝑠 (𝑛 + 1) is the desired set point for the response time of the cloud software system, and
𝑦 (𝑛 + 1) is the measured response time of the system.
Control law for the discrete incremental PID [29] is defined as follows, one should note that since
number of containers cannot take float values we use ceiling function on the 𝑢 (𝑛) :

𝑢 (𝑛) =
⌈
𝑢 (𝑛 − 1) + 𝑘𝑝 (𝑒𝑡 (𝑛) − 𝑒 (𝑛 − 1))+
𝑘𝐼𝑒 (𝑛) + 𝑘𝐷 (𝑒 (𝑛) − 2𝑒 (𝑛 − 1) + 𝑒 (𝑛 − 2))

⌉ (7)

where 𝑢 (𝑛) is a control input at discrete-time n. 𝑘𝑝 , 𝑘𝐼 , and 𝑘𝐷 are the proportional, integral, and
derivative gains of the incremental discrete controller respectively. We are going to adaptively
change these gains as the system behaviour changes with respect to the following cost function for
controller [29]:

𝐽 =
1
2
(𝑦𝑑𝑒𝑠 (𝑛 + 1) − 𝑦 (𝑛 + 1))2 =

1
2
(𝑒𝑡 (𝑛 + 1))2 (8)

2https://github.com/pacslab/NNPIDAutoscaler

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

xx:12 M. Sabuhi et al.

To adjust the controller gains, the gradient descent method has been applied as follows:

𝑘𝑃 (𝑛 + 1) = 𝑘𝑃 (𝑛) − 𝜂𝑐
𝜕𝐽

𝜕𝑘𝑃

𝑘𝐼 (𝑛 + 1) = 𝑘𝐼 (𝑛) − 𝜂𝑐
𝜕𝐽

𝜕𝑘𝐼

𝑘𝐷 (𝑛 + 1) = 𝑘𝐷 (𝑛) − 𝜂𝑐
𝜕𝐽

𝜕𝑘𝐷

(9)

where 𝜂𝑐 is the controller learning rate. From equations 8 and 9, using the chain rule for derivatives,
we can derive the following equations for updating the PID controller gains:

𝜕𝐽

𝜕𝑘𝑃
=

𝜕𝐽

𝜕𝑦 (𝑛 + 1)
𝜕𝑦 (𝑛 + 1)
𝜕𝑢 (𝑛)

𝜕𝑢 (𝑛)
𝜕𝑘𝑃

= −𝑒𝑡 (𝑛 + 1)
𝜕𝑦 (𝑛 + 1)
𝜕𝑢 (𝑛) 𝜃1 (𝑛)

𝜕𝐽

𝜕𝑘𝐼
=

𝜕𝐽

𝜕𝑦 (𝑛 + 1)
𝜕𝑦 (𝑛 + 1)
𝜕𝑢 (𝑛)

𝜕𝑢 (𝑛)
𝜕𝑘𝐼

= −𝑒𝑡 (𝑛 + 1)
𝜕𝑦 (𝑛 + 1)
𝜕𝑢 (𝑛) 𝜃2 (𝑛)

𝜕𝐽

𝜕𝑘𝐷
=

𝜕𝐽

𝜕𝑦 (𝑛 + 1)
𝜕𝑦 (𝑛 + 1)
𝜕𝑢 (𝑛)

𝜕𝑢 (𝑛)
𝜕𝑘𝐷

= −𝑒𝑡 (𝑛 + 1)
𝜕𝑦 (𝑛 + 1)
𝜕𝑢 (𝑛) 𝜃3 (𝑛)

(10)

where 𝜕𝑦 (𝑛+1)
𝜕𝑢 (𝑛) is Jacobian of the controlled system and it is obtained from the system identification

process, and 𝜃1 (𝑛) = 𝑒 (𝑛) − 𝑒 (𝑛 − 1), 𝜃2 (𝑛) = 𝑒 (𝑛) and 𝜃3 (𝑛) = 𝑒 (𝑛) − 2𝑒 (𝑛 − 1) + 𝑒 (𝑛 − 2). The
algorithm for proposed adaptive controller is shown in Algorithm 1.
It is worth noting that the controller adaptation will be performed when the neural network

exhibits “satisfactory accuracy”. In our experimental evaluations, we define the neural network is
satisfactory accurate when the prediction error in response time is less than 300ms. Considering
this value helps us prevent controller adaptation from diverging since if any large changes happen
in the identified model, it will lead to a wrong Jacobian. According to Algorithm 1, the NN model
is fine tuned at runtime to adapt itself to the changes in the environment, therefore, we can wait
until the model is learned online again and then adjust the controller to the new model. Moreover,
according to Algorithm 1, the controller optimization is only performed when the neural network
model’s prediction error is lower than the threshold and when the regulation error is not zero, i.e.
the response time is not between 500-800 ms. Although a full stability analysis would stray from
the scope of this study, the proposed approach for adaptation of the controller is a viable and robust
means to prevent the same adaptation from driving the closed-loop system toward instability.

5 EVALUATION
In this section, we describe the experimental setup and the configuration of the underlying in-
frastructure. Then, we discuss the experimental methodology for more detail on workloads and
performance metrics.

5.1 Experimental Setup
To properly evaluate the effect of the proposed algorithm on performance compared to with other
auto-scaling algorithms, we deployed a three-tier containerized WordPress cloud application with
MySQL as the database and Nginx as the webserver deployed on a Kubernetes cluster. We picked
WordPress as the benchmarking application due to its widespread use in more than 34% of all
websites over the Internet [59]. For load testing, we leveraged an extended version of Locust
Library [30], available publicly in our repository3 on the same cluster to minimize the effect of
3https://github.com/pacslab/pacs_locust

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

https://github.com/pacslab/pacs_locust

Optimizing the Performance of Containerized Cloud Software Systems using Adaptive PID-Controllers xx:13

Algorithm 1: Proposed Adaptive Controller Algorithm
input :𝑦𝑛+1 — The average response time measured for the current time step.
input :𝑢𝑛, 𝑢𝑛−1, ..., 𝑢𝑛−𝑛𝑢 — The number of requested containers for 𝑛𝑢 previous time steps.
input :𝑧𝑛, 𝑧𝑛−1, ..., 𝑧𝑛−𝑛𝑧 — The number of running containers for 𝑛𝑧 previous time steps.
input :𝑑𝑛, 𝑑𝑛−1, ..., 𝑑𝑛−𝑛𝑑 — The number of users for 𝑛𝑑 previous time steps.
input :𝐾𝑃 (𝑛), 𝐾𝐼 (𝑛), 𝐾𝐷 (𝑛) — The controller parameters at time step n.
output :𝑢 (𝑛 + 1) — The updated controller command for the next time step.
while True do

/* According to the current parameters(𝐾𝑃 (𝑛), 𝐾𝐼 (𝑛), 𝐾𝐷 (𝑛)) */
Calculate 𝑢 (𝑛) using Equation 7
Calculate the Jacobian using Equation 5
Prepare the input vector 𝑥𝑖 (𝑛) for NN model according to Equation 3
/* NN model predicts the average response time. */
𝑦 (𝑛 + 1) ← 𝑓 (𝑥𝑖 (𝑛)) according to Equation 2
𝑒 (𝑛 + 1) ← 𝑦 (𝑛 + 1) − 𝑦 (𝑛 + 1)
/* Checking the accuracy of the predictor. */

if |𝑒 (𝑛 + 1) | < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
/* Updating the control variables */

𝑘𝑃 (𝑛 + 1) ← 𝑘𝑃 (𝑛) − 𝜂𝑐 𝜕𝐽

𝜕𝑘𝑃

𝑘𝐼 (𝑛 + 1) ← 𝑘𝐼 (𝑛) − 𝜂𝑐 𝜕𝐽

𝜕𝑘𝐼

𝑘𝐷 (𝑛 + 1) ← 𝑘𝐷 (𝑛) − 𝜂𝑐 𝜕𝐽

𝜕𝑘𝐷

else
/* The control variables are not updated due to unsatisfactory

prediction. */
𝑘𝑃 (𝑛 + 1) ← 𝑘𝑃 (𝑛)
𝑘𝐼 (𝑛 + 1) ← 𝑘𝐼 (𝑛)
𝑘𝐷 (𝑛 + 1) ← 𝑘𝐷 (𝑛)

end
/* According to the new control parameters(𝐾𝑃 (𝑛 + 1), 𝐾𝐼 (𝑛 + 1), 𝐾𝐷 (𝑛 + 1)) */
Calculate 𝑢 (𝑛 + 1) using Equation 7
/* To improve the prediction accuracy the NN-Model is fine-trained. */
Fine-tune the NN-Model by optimizing Equation 4

end

network latency in the results. Our extended version of Locust gave us more flexibility during
experiments than any other available load testing tool. We used a simple REST API developed on
the load testing tool4 that helped us control the load testing and measure the performance of the
application at runtime. The details of our deployment, along with the configuration settings, can be
found in our GitHub repository5. To synchronize the WordPress’s upload folder between different
instances, we used an NFS server deployed to the same zone as the Kubernetes cluster to minimize
the network latency.

4https://github.com/pacslab/pacs_load_tester
5https://github.com/pacslab/wordpress-kubernetes-deployment

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

https://github.com/pacslab/pacs_load_tester
https://github.com/pacslab/wordpress-kubernetes-deployment

xx:14 M. Sabuhi et al.

Table 1. Configuration of the Kubernetes Cluster.

Property Value
Cluster Zone us-central1-a
Minimum Nodes 1
Maximum Nodes 7
VM Type n1-standard-1
vCPU 1
RAM 3.75 GB
SSD 30GB
OS Container-Optimized OS
Client Version 1.13.9
Server Version 1.13.6

5.1.1 Kubernetes Cluster. For the purpose of this work, we deployed a Kubernetes cluster on the
Google Cloud Platform (GCP) using the Google Kubernetes Engine (GKE). The cluster configuration
used in the experiments can be found in Table 1.

5.1.2 Benchmarking Application. In this section, we introduce the details of our benchmarking
three-tier containerized application. For this study, we used WordPress with PHP FPM version 7.3
as our application server. Our application server uses MySQL version 5.6 as the database and Nginx
version 1.7.9 as its web server. Our configuration files, as well as the Docker images and deployment
procedure, is publicly available on the WordPress deployment GitHub repository mentioned above.

5.2 Experimental Methodology
In this section, we discuss different workloads and the motivations behind selecting them. Moreover,
the performance metrics of interest are presented to compare the controllers’ ability to satisfy the
cloud software system SLA requirements. It is noteworthy that before designing the experiments,
we first evaluated the available resources’ capacity in handling the number of users. Regarding
the VMs, we could create 42 containers of the WordPress Application. Therefore, the number of
containers is more than sufficient to satisfy the control objectives,e.g. SLA. We assumed that the
orchestration system works correctly in resource provisioning, i.e. the infrastructure is reliable. In
other words, all the containers are created successfully when the appropriate command is called.

5.2.1 Step-change Workload. Figure 6 portrays the step-change workload (blue line) in which the
number of users changes abruptly, resembling a step signal. The number of users rises from 30
to 60 and then declines back to 30, in a period of 36 minutes. The rationale behind considering
such workload is to evaluate the robustness of the controllers against sudden disturbances and
also study the adaptive behaviour of the proposed controller in managing the SLA, performance in
particular. This is a common situation for online websites that offer short time deals, attracting a
considerable number of users in a short time.

5.2.2 FIFA World-Cup Workload. Figure 6 presents the second workload (black line). In this case,
the number of users varies according to the variations of the FIFA World-Cup 1998 data set [7]
collected from ‘1998-06-30 08:00:01’ to ‘1998-07-01 08:00:00’. Given the systems’ capacity in handling
the number of requests, we scaled down the number of users between 30 and 150 while persevering
the shape of the trace. The reason for choosing 150 as the number of user upper limit is that the
application is close to its saturation point but can still maintain the control target in the desired
region. Also, the time scale is transformed from 24 hours to 8 hours, which helped us study the

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

Optimizing the Performance of Containerized Cloud Software Systems using Adaptive PID-Controllers xx:15

control system’s performance under more intensified fluctuations in the number of users. This
behaviour may occur in web services offering live sports game streaming. At the start of each sport
event, the number of online streamers increases gradually, and at the end of the event, a gradual
decrease can be observed.

Fig. 6. FIFA World-Cup and Step Change Workload.

5.2.3 Performance Metrics. Various performance metrics are considered to have a clear comparison
of controllers’ capability and efficiency in maintaining the optimized performance. We consider
well-known performance metrics from the control and software community to have the best of
two worlds. The Mean Squared Error (MSE), Mean Absolute Error (MAE), and rise time are used as
representative performance indices from control theory. The definition of MSE and MAE are given
in Equation (11) and (12), respectively. For the sake of simplicity, we define the rise time as the
time required for the controller to bring the response time of the system to the desired operating
region after the disturbance has been applied.

𝑀𝑆𝐸 =
1
𝑁

∑
[𝑒 (𝑡)]2 (11)

𝑀𝐴𝐸 =
1
𝑁

∑
|𝑒 (𝑡) | (12)

For software domain performance metrics, Service-Level Agreement (SLA) and efficient provi-
sioning are considered. We define the SLA as follows: the upper limit for the average response time
(1, 000𝑚𝑠) cannot be violated more than one minute, i.e., three consecutive monitoring intervals. If
such a violation occurs, we aggregate the violation time and count this as a violation with a penalty.
Since the SLA does not change frequently, i.e. the set point for the response time is not changed;
we are dealing with a regulation and disturbance rejection control problem. Therefore, the goal is
to regulate the set-point around the defined SLA and reject the effect of change in the number of
users on the response time,i.e. disturbance rejection.
Three different provisioning efficiency metrics are considered according to the Cumulative

Distribution Function (CDF). The over-provisioning is defined as the percentage of the time that
response time is below 500ms, i.e., containers are more than necessary. We prefer this value to be
as low as possible. The under-provisioning is defined as the percentage of the time that response
time lies between 800 − 1, 000𝑚𝑠 , i.e., more containers are required—similarly, the less the under-
provisioning, the better. Efficient provisioning is defined as the percentage of the time that response
time is between 500-800ms, i.e., the number of containers is according to the system requirements.
It is ideal to have higher values for efficient provisioning.

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

xx:16 M. Sabuhi et al.

5.3 Experimental Results
To evaluate the efficiency of the proposed method in maintaining the response time of the three-tier
containerized web application, several experiments have been carried out with different controllers;
in particular, the responsiveness and robustness of the controllers under two types of workloads
are investigated.
The scaling heat algorithm is employed from [12] as the baseline, which represents a robust

reactive algorithm to maintain the performance metrics. According to this algorithm, when a
violation of the upper threshold occurs, indicating the saturation of the container, we increase
the heat factor by one, and if a violation from the lower threshold happens, indicating resource
under-utilization, we decrease the heat factor by one. If no violations occur, i.e. the utilization is
within the range, we decrease the heat factor by one until the heat factor is zero. If the heat factor is
equal to a specific number (e.g., 𝑛/−𝑛), we create/terminate one container. The primary distinction
between the scaling heat algorithm and other threshold-based algorithms is that it waits for several
consecutive violations to react. This gives the scaling algorithm robustness against the ping-pong
effect. The ping-pong effect is an undesirable alternating scale up and scale down of the resources
(containers), which results in oscillation in the number of containers and the performance metrics.
In our experiments, we chose the number of consecutive violations needed for the scaling to occur
to be 5 (𝑛 = 5), according to the [12], with an upper trigger point of 800 and a lower trigger point
of 500.

As for the non-adaptive control theoretical approach, we evaluate the fixed-PI (FPI) and fixed PID
(FPID) controllers. Note that in the absence of an appropriate linear model for the target software
system, these controllers’ gains are obtained after a short period of experimentation and manual
tuning. The gains were set to 𝐾𝑃 =0.0004, 𝐾𝐼 =0.0004, and 𝐾𝐷 =0.00005.
The obtained gains from the manual training are used as an initial condition for our proposed

adaptive controllers. We consider adaptive neural network based PI (NN-PI) and adaptive neural
network based PID (NN-PID) controllers for evaluation. The controller learning rate 𝜂𝑐 is set to
2𝑒 − 13 for 𝐾𝑃 and 𝐾𝐼 , and 2𝑒 − 14 for 𝐾𝐷 , which is tuned manually. The reason for setting small
values for these control parameters and the learning rate is because the time is in millisecond and
choosing larger values may result in divergence in adaptation. Adam Optimizer is selected for
training the weights and biases of the neural network with the training rate of 𝜂 = 0.002, 𝛽1 = 0.99,
𝛽2 = 0.9, and 𝜖 = 1𝑒 − 8. There is no specific way to find the optimal initial value for controller
learning rates, and we need to find it by trial and error.
The control objective is to maintain the response time of the system between 500-800ms (set-

point) by adjusting the number of containers (actuator) to immediately react to the change in the
number of users (disturbance). In this range, the control error is considered zero, and hereafter we
refer to this range as the desired operating region. The motivation behind choosing this range is that
most of the cloud providers prefer to maintain the response time of their system in a pre-defined
range, to prevent SLA violations and over-provisioning at the same time. Therefore, we can evaluate
the controllers’ applicability to the real world control problems for cloud service providers.
For each workload, we conduct the experiment three times for reproducibility. All the reports

are given on average of these three experiments. Care has been taken to carry out the experiment
in similar conditions. In other words, we conduct the experiments each day simultaneously and
on the same infrastructure. In our experiments, we used Google N1 standard machine types.
These types of virtual machines do not use shared CPUs, i.e. each of them has its own dedicated
resources. Therefore there is minimal interference between Virtual Machines, which is negligible.
According to GCP benchmarks, these instances only have 2.47% standard deviation regarding their

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

Optimizing the Performance of Containerized Cloud Software Systems using Adaptive PID-Controllers xx:17

performance [27]. Finally, we compare and discuss the performance metrics for all these controllers
and enumerate the pros and cons of each.

5.4 Step-Change Workload
This experiment’s main objective is to investigate the efficiency of the controllers against abrupt
disturbance imposed on the system. Besides, we aim to observe the effect of the PI and PID
controllers’ adaptability when facing a recurrent disturbance in the future.

(a) Variations in the number of containers imposed by the variation in the workload.

(b) Response time of the cloud software system for step change in number of users. Vertical dashed lines
indicate the time of these step changes.

Fig. 7. Comparison of five controllers in managing the response time of the cloud software system.

(a) First experiment (b) Second experiment (c) Third experiment

Fig. 8. Cumulative Distribution Function (CDF) for all the experiments.

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

xx:18 M. Sabuhi et al.

Fig. 9. Adaptation in control parameters for Step-Change workload.

Figure 7b depicts the response time of the system under study for the first experiment. Upper
and lower trigger points are shown by horizontal dashed and dotted green lines, respectively. The
dashed red line shows the SLA limit for the response time.

Figure 7a shows the control signal (i.e., the number of successfully provisioned containers)
generated by each controller in response to the disturbance (i.e., number of users) injected to the
system. In Figure 8, Cumulative Distribution Function (CDF) is shown separately for each conducted
experiment. In this figure, the dashed/solid vertical green line shows the lower/upper trigger point
of the desired operating region. Also, SLA is shown by a solid red line. Figure 9 shows the changes
in the adaptive controller parameters in response to the step-change workload. According to this
figure, the controller parameters’ changes become smaller with respect to time, indicating the
convergence to an optimal value. Moreover, since the controller parameters are adjusted when the
number of users changes, we can conclude that the NN model has a good prediction ability.

Table 2 shows a summary of the results by presenting the average and the Standard Deviation
(STD) of the three experiments performed in this study. Small STD for these three experiments
indicates that the results are reproducible. Table 3 demonstrates the improvements achieved by
adaptive controllers, compared to the scaling heat algorithm.

Response Time: According to Table 2, all controllers have average response-time laying in the
desired operating region.

Consequently, we need to do a deeper investigation on other metrics.
Provisioning Efficiency: According to Table 2, NN-PID and NN-PI significantly decreased the

resource over-provisioning ratio.
According to Table 3, our results indicate that adaptive controllers achieve an improvement of

34.46% and 22.28% for handling under-provisioning for NN-PID and NN-PI, respectively. This finding
suggests that adopting the proposed method uses less resources and, consequently, less energy. This
fact can be seen in Figure 8. Magnification around lower trigger point (dashed green line) reveals
that both NN-PI and NN-PID are more capable of handling the problem of over-provisioning.

As reported in Table 3, similar behaviour is observed in the efficient provisioning of the resources.
NN-PID and NN-PI were successful in assigning an efficient amount of resources to the cloud
software application. According to the efficient provisioning percentage reported in Table 3, the
efficiency of the resource allocation improved by 74.31% for NN-PID and 65.83% for NN-PI compared
to the scaling heat algorithm. This observation can be made looking to both magnified lower and
upper trigger points in Figure 8.

Similarly, one can confirm these improvements by looking at the system’s behaviour around the
upper trigger point and SLA, which is magnified for better perception in Figure 8.
From Table 2, leveraging adaptive controllers, we observed an increase in the average number

of containers used over the experiments. This is mainly due to the fact that efficient resource

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

Optimizing the Performance of Containerized Cloud Software Systems using Adaptive PID-Controllers xx:19

provisioning doesn’t necessarily lead to using fewer containers or to less changes in the resources
used. On the contrary, the control algorithm should instantly provide enough resources according
to the control objective.

Service Level Agreement: This comparison is mainly based on the description of SLA in Sec-
tion 5. According to Table 2, results confirm that control-theoretical controllers are more capable
of preventing SLA violations. And among them, adaptive controllers comply with the SLA re-
quirements more effectively. This fact is highlighted when comparing the improvements in SLA
violations. As can be seen, compared to the scaling heat algorithm, SLA violations decreased by
43.2% and 49.26% for NN-PI and NN-PID, respectively.

Rise Time: In Section 5.2.3, we described the rise-time and the reason behind considering this
performance metric. In this experiment, we have four rise-times, i.e., two rising edge disturbance
𝑡1 and 𝑡3, and two falling edge disturbance 𝑡2 and 𝑡4. Based on the results presented in Table 2,
control-theoretical approaches considerably outperform the scaling heat algorithm. Moreover,
adaptive controllers exhibited better disturbance rejection characteristics compared to the fixed PI
and fixed PID controllers.
Evaluating this performance metric revealed two interesting observations. Considering the

scaling heat algorithm as the baseline in Table 3, the first observation is that there is a considerable
improvement in the rise time of the system adopting the proposed adaptive controller. For example,
we observed an almost 50% improvement in the control system’s rise time for the first rising edge
disturbance. The second observation is that the second rising/falling edge disturbance’s effect
becomes less severe, confirming the controller’s optimized behaviour for similar disturbances. This
shows the adaptability of the proposed controller when dealing with future disturbances. This
phenomenon can be observed in Figure 7a. After the first rising edge disturbance, NN-PI and
NN-PID have the highest slope in creating containers. This slope gets even steeper for the second
rising edge disturbance. Similar behaviour is seen for the falling edge.

Table 2. The average and standard deviation of the performance metrics for three conducted experiments for
step-change workload.

Controller Type
Performance Metrics Heat F-PI NN-PI F-PID NN-PID

avg. RT[STD] (ms) 699.82[11.30] 729.52[5.16] 672.98[10.48] 734.97[6.01] 667.07[27.19]
avg. Containers[STD] 7.50[0.02] 7.11[0.06] 9.26[0.30] 7.06[0.10] 8.86[0.06]
Over-Provisioning[STD] % 28.00[2.70] 33.88[1.18] 21.76[2.35] 31.27[0.87] 18.35[2.82]
Efficient Provisioning[STD] % 38.46[6.06] 28.83[2.27] 63.78[2.84] 35.20[4.06] 67.04[7.07]
Under-Provisioning[STD] % 9.20[1.07] 22.28[1.41] 1.31[0.85] 10.09[6.46] 2.24[2.45]
SLA Violations[STD] (s) 540.00[20.00] 413.33[11.55] 306.67[64.29] 366.67[23.09] 340.00[87.18]
𝑡1[STD] (s) 460.00[34.64] 386.60[50.33] 240.00[40.00] 373.40[90.18] 233.40[30.55]
𝑡2[STD] (s) 386.60[11.54] 293.40[11.55] 260.00[0.00] 346.60[46.18] 233.40[41.63]
𝑡3[STD] (s) 413.34[41.63] 373.40[100.66] 140.00[20.00] 340.00[138.56] 146.60[[11.55]
𝑡4[STD] (s) 393.40[11.54] 306.60[41.63] 160.00[20.00] 300.00[40.00] 140.00[40.00]

Discussion: Taking into account all the performance metrics, we can respond to research
questions 2 and 3. For RQ2, all controllers could maintain the average response time in the desired
operating region. However, the scaling heat algorithm could not adequately react to the sharp
disturbances, accounting for more SLA violations. On the contrary, control theoretical methods had
fewer SLA violations and reacted to the disturbances faster. Amongst control-theoretical approaches,
the proposed adaptive controllers significantly outperformed the non-adaptive counterparts in
both SLA and rise time.

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

xx:20 M. Sabuhi et al.

Table 3. Improvement in the performance metrics for the first experiment compared to the scaling heat
algorithm, all reported in percentage.

Improvement %
Performance Metrics NN-PI NN-PID

Efficient Provisioning % 65.83 74.31
Under-Provisioning % 85.76 75.65
SLA Violations % 43.20 37.03
𝑡1 % 47.82 49.26
𝑡2 % 32.74 39.62
𝑡3 % 66.12 64.53
𝑡4 % 59.32 64.41

Regarding RQ3, considering the discussion made in provisioning efficiency, it can be concluded
that adaptive controllers are more capable of handling resource management tasks by drastically
improving the over-provisioning, Efficient provisioning, and under-provisioning. Furthermore, we
can see that both controllers show satisfactory performance compared to the adaptive PI and PID
performance. This experiment motivated us to evaluate them against a more realistic workload.

5.5 FIFA World-Cup Workload
In this experiment, exposing the cloud software system to the second workload described in Sec-
tion 5.2.2, we aim to examine the performance of the proposed controllers against a more realistic
workload for a longer time interval. The average response time is shown in Figure 10b. All of the
thresholds are defined similarly to the step-change experiment. Figure 10a depicts the changes in
the number of containers in response to the workload variations.
Additionally, Figure 11 presents the cumulative distribution function of response time for all

these three experiments conducted for reproducibility validation. Figure 12 shows the changes in
the adaptive controller parameters during the experiment. According to this figure, the variations
in the controller parameters decrease with respect to time. This behaviour shows that the controller
parameters are being optimized, and the proposed adaptive controller is working properly. Details
of the experiments are summarized in Table 4 along with the STD of three experiments. Small STD
for these three experiments indicates that the results are consistent. Furthermore, assuming the
scaling heat algorithm as the baseline, improvements in the metrics are reported in Table 5 for
comparison.

Response Time: According to Table 4 and Table 5, the results are in accordance with the findings
of the previous experiment on the step-change workload. All the controllers could maintain the
average response time in the desired operating region.

Provisioning Efficiency: Referring to Table 4, significant improvement is observed for the pro-
posed adaptive methods in terms of the resource over-provisioning. Control theoretical approaches
tend to allocate resources more cost-effectively. The over-provisioning drops from 16.04% to 5.66%
and 8.87% for NN-PI and NN-PID, respectively, which results in 64.71% and 44.7% cost reduction. For
the fixed versions of PI/PID controllers, this cost reduction is around 15%, which still is significant
at a large scale. This can be observed in Figure 11 around the lower trigger point shown by the
dashed green line. The magnified picture is presented for better perception. NN-PID and NN-PI
showed lower over-provisioning. On the contrary, the scaling heat algorithm suffers from high
resource over-provisioning.

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

Optimizing the Performance of Containerized Cloud Software Systems using Adaptive PID-Controllers xx:21

(a) Variations in the number of containers imposed by the variation in the workload.

(b) Response time of the cloud software system for FIFA Wold-Cup workload.

Fig. 10. Comparison of five controllers in managing the response time of the cloud software system against
real world workload.

(a) First experiment. (b) Second experiment. (c) Third experiment.

Fig. 11. Cumulative Distribution Function (CDF) for all the experiments.

In terms of efficient provisioning, results substantiate the capabilities of the adaptive controllers
in efficient resource management. According to Table 4, all control-theoretical methods allocated the
resources more efficiently compared to the scaling heat algorithm. Results in Table 5 suggest 22.12%
and 14.21% better resource allocation for NN-PI and NN-PID, respectively. Referring to Figure 11,
around the upper trigger point (solid dashed line), all controllers maintain the response time
below the upper trigger point for almost 75% of the time. A similar performance is observed in all
experiments.
Although the performance was not ideal for under-provisioning, results reveal that NN-PI and

NN-PID are conservative in allocating more resources than the scaling heat algorithm. This fact can
be seen in Table 5 that shows the increase in under-provisioning from 15.19% to 16.76% and 15.28%.

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

xx:22 M. Sabuhi et al.

Fig. 12. Adaptation in control parameters for FIFA World-Cup workload.

However, this increase is negligible, and results show that it does not affect the SLA. Therefore, we
can infer that adaptive controllers tend to use the resources close to the system capacity, without
violating the SLA.

Service Level Agreement: As can be seen in Table 4, surprisingly, the scaling heat algorithm
shows a decent performance compared to Fixed PI/PID and NN-PID in terms of the number of
SLA violations. However, adopting NN-PI decreased the SLA violations by 27.11%, compared to the
scaling heat algorithm. We found that since in control-theoretical approaches, “controller gains”
decide about the magnitude of change in the number of containers, non-adaptive controllers are
not suitable for slowly varying workloads. In the absence of a system model, these gains cannot be
found accurately. And even if we have a model, we need to adapt the model to the environment
changes. This fact highlights the need for leveraging an adaptive controller.

Table 4 suggests an inferior performance for the adaptive PID controller. This result could be
because the auto-scaler has to deal with the cloud software system’s stochastic behaviour, the
presence of disturbances, noisy measurements, and delay in the actuator. Having a derivative term
would increase the controller’s sensitivity to these artifacts, leading to system instability.

According to Table 4, all controllers tend to use the same number of containers on average except
NN-PID, which used 23.13%more containers. Besides, according to Figure 10a, this controller applies
a greater change in the number of containers compared to other controllers with the expense of
degraded performance (e.g., SLA). The reason for this is that creating/removing containers will add
a computational overhead to the system. This influences the response time of the system for a while,
and if this happens a lot, it will drastically deteriorate the overall performance. This behaviour
contributes to the reason why 80% of the controllers prefer not to use the derivative term in the
controller [3].

Mean Squared Error: Mean squared error plays a crucial role in designing the adaptive neural
network-based PI/PID controller. The adaptive behaviour of the controllers is achieved by minimiz-
ing the MSE. According to Table 5 and Table 4, the optimization task is carried out successfully by
causing 56.27% and 35.81% drop in MSE compared to the scaling heat algorithm, for NN-PI and
NN-PID, respectively. This improvement can be observed in Fixed PI/PID as well. The reason is
that the control-theoretical approaches’ main objective is to decrease the system error with respect
to its magnitude. On the contrary, the scaling heat algorithm ignores the magnitude of the error.

Mean Absolute Error: In addition to MSE, Mean Absolute Error (MAE) was reduced by 42.72%
and 14.10% for NN-PI and NN-PID, respectively.
Note that MSE denotes the controller’s performance in regulating the response time of the

system and shows whether these regulation errors are significant or not in magnitude, having more
emphasis on larger errors. As opposed to MSE, MAE looks at the errors with similar weights and
ignores the magnitude.

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

Optimizing the Performance of Containerized Cloud Software Systems using Adaptive PID-Controllers xx:23

Table 4. The average and standard deviation of the performance metrics for three conducted experiments for
FIFA workload.

Controller Type
Performance Metrics Heat F-PI NN-PI F-PID NN-PID

avg. RT[STD] (ms) 674.28[11.21] 693.54[19.13] 680.76[6.26] 684.62[1.05] 698.14[5.01]
avg. Containers[STD] 10.46[0.058] 11.33[1.61] 10.51[0.37] 10.35[1.12] 12.88[0.82]
MSE[STD] (×104) 11.12[1.30] 6.40[0.40] 4.86[0.48] 6.20[1.08] 7.14[1.10]
MAE[STD] 68.79[1.65] 76.06[3.16] 39.40[2.36] 72.89[4.86] 59.09[7.10]
Over-Provisioning[STD] % 16.04[0.50] 13.29[0.94] 5.66[0.20] 12.73[0.81] 8.87[1.84]
Efficient Provisioning[STD] % 60.94[0.63] 62.29[3.87] 74.42[0.25] 64.25[1.76] 69.60[1.31]
Under-Provisioning[STD] % 15.19[0.96] 14.99[2.70] 16.76[0.37] 13.75[0.53] 15.28[2.84]
SLA Violations[STD] (s) 393.33[57.74] 1,860.00[336.45] 286.67[50.33] 1,873.33[323.31] 873.33[133.16]

Table 5. Improvements in the second experiment, compared to the scaling heat algorithm.

Improvement %
Performance Metrics NN-PI NN-PID
avg. Response Time % -0.96 -3.53
avg. Containers % -0.47 -23.13
Mean Squared Error % 56.27 35.81
Mean Absolute Error % 42.72 14.1
Over-Provisioning % 64.71 44.70
Efficient Provisioning % 22.12 14.21
Under-Provisioning % -10.33 -0.59
SLA Violations % 27.11 -122.03

Discussion: Exposing the controllers to a realistic workload for a longer time revealed interesting
findings. For RQ2, the same behaviour in maintaining the average response time was observed,
confirming the results of the previous experiment. Also, better MSE and MAE were achieved by
the control-theoretical approaches. However, surprisingly, fixed PI/PID exhibited unacceptable
performance in terms of the SLA violations. In contrast, the adaptive PI controller significantly
decreased the SLA violations compared to the other controllers.
Regarding the provisioning efficiency (RQ3), the control-theoretical approaches present better

resource management capabilities in almost all cases. However, the scaling heat algorithm performs
better in terms of under-provisioning. An interesting observation is the tendency of the adaptive
PID in creating/removing the containers, which causes performance overhead and, consequently,
SLA violations.
Comparing both adaptive controllers, we can conclude that adaptive PI performs better than

adaptive PID for real-world workloads and long term control purposes. This is mainly due to the
fact that it is less sensitive to the uncertainties and noise in the system. Besides, it provides better
resource management utilizing an almost equal number of containers while achieving fewer SLA
violations.

6 LIMITATIONS
There are some limitations on this work. First, since we require an initial condition for our proposed
controller, finding better initial conditions can lead to better performance. However, in the long-run,
the optimization task will push the system to a minimized cost function. Furthermore, considering

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

xx:24 M. Sabuhi et al.

online model identification and the highly stochastic behaviour of the cloud software systems,
noisy measurements could result in incorrect online system identification or controller divergence.
It is better to select the identification and controller training rate as low as possible to address this
issue. However, model training and controller optimization will take a longer time.
The second limitation is the extent of the generalizability of our experiments. In this study,

we selected the WordPress application as a standard three-tier application for evaluating the
adaptive behaviour of our proposed adaptive PID-controller in optimizing the performance of the
containerized cloud software systems. The rationale behind this decision is that WordPress is one
of the main drivers for many websites nowadays. It worth noting that the focus of this study is to
propose an adaptive control theoretical approach for optimizing the auto-scalers at runtime and the
way we can benefit from a massive amount of collected performance data to obtain a non-linear
model of the cloud software system, which can be used to optimize the performance and the
auto-scaler. To the best of our knowledge, our study is the first to adopt neural networks to propose
a model suitable for control theoretical auto-scalers, and we aim to pave the road for future studies
in the area of cloud software system performance optimization. We expect the same efficiency
and the same outcome for other applications. However, future studies may further investigate the
impact of selecting different applications on the neural networks’ architecture.

The third limitation of this study is the sampling rate selection. The sampling rate plays a crucial
role, both in the system identification and the control mechanism. Increasing the sampling rate
helps improve the reaction time to any change in the measurements while adding some overhead
to the system monitoring and data acquisition. Moreover, a high sampling rate will not necessarily
improve the controller’s performance due to the presence of uncertainty in the measurements.
Selecting different sampling rates results in different system models; therefore, we cannot make
a fair comparison between these models. As a result, we relied on a widely used sampling rate,
a sampling rate of 20 seconds, in the cloud infrastructures. Also, considering that the proposed
controller itself is more complicated than a simple heat-based method, we impose a computation
overhead to the system, which is not measured here.
Another limitation of this study is the stability analysis for the proposed controller. According

to [55], the stability of a software system guarantees the ability of the system to converge to the
objectives. A system can be stable without goals; however, a goal cannot be achieved in an unstable
system. In our study, we defined this goal as the controller’s ability to maintain the system’s
response time in a specific range, in other words minimizing the regulation error. For different
software qualities, we have different interpretations of stability. Also, to analyze a system’s stability
mathematically, we require the dynamic model of the system. Since our model is data-driven, we
cannot directly use it to find the attraction region of the controller.

7 CONCLUSION AND FUTUREWORK
In this paper, we proposed and evaluated various adaptive and non-adaptive controllers for con-
tainerized cloud applications. Through extensive experimentation, we identified the best adaptive
controller that can optimize the performance and SLA under different parameter settings and config-
urations. To this end, we leveraged the power of black-box modelling, i.e., neural networks and PID
controllers, to make controllers adaptive, scalable, efficient, and extendable to other containerized
cloud applications. The key is to use a simple, pure reactive auto-scaler at the beginning of the
software system operation and then hand over the auto-scaling to the adaptive controller when
it has reached satisfactory accuracy in prediction. Afterward, the software system’s performance
under control will be kept optimized due to the neural network’s online training and modifying
the controller’s parameters accordingly at run time.

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

Optimizing the Performance of Containerized Cloud Software Systems using Adaptive PID-Controllers xx:25

Our experimental results show that the proposed adaptive PID controller works well even
without a precise model for updating the controller’s parameters. This makes them well suited for
controlling cloud software systems.
For future studies, we plan to investigate the performance of different data-driven modelling

approaches, such as Long Short Term Memory (LSTM), and introduce other optimization terms
in our proposed adaptive controller’s cost function,e.g. constraints on the number of containers.
Moreover, we aim to study the effect of different sources of uncertainty on the performance of
self-adaptive systems such as actuator uncertainties.

ACKNOWLEDGEMENT
We would like to thank Google for supporting this research by providing us the research credit to
access the Google Cloud Platform.

REFERENCES
[1] Alma Y. Alanis, Jorge D. Rios, Jorge Rivera, Nancy Arana-Daniel, and Carlos Lopez-Franco. 2015. Real-time discrete

neural control applied to a Linear Induction Motor. Neurocomputing 164 (2015), 240–251.
[2] Hanieh Alipour and Yan Liu. 2017. Online machine learning for cloud resource provisioning of microservice backend

systems. In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2433–2441.
[3] Kiam Heong Ang, Gregory Chong, and Yun Li. 2005. PID control system analysis, design, and technology. IEEE

Transactions on Control Systems Technology 13, 4 (2005), 559–576.
[4] Hamid Arabnejad, Claus Pahl, Pooyan Jamshidi, and Giovani Estrada. 2017. A comparison of reinforcement learning

techniques for fuzzy cloud auto-scaling. In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing. IEEE Press, 64–73.

[5] Davide Arcelli and Vittorio Cortellessa. 2016. Challenges in Applying Control Theory to Software Performance
Engineering for Adaptive Systems. In Companion Publication for ACM/SPEC on International Conference on Performance
Engineering (Delft, The Netherlands). ACM, New York, NY, USA, 35–40.

[6] D. Arcelli, V. Cortellessa, A. Filieri, and A. Leva. 2015. Control theory for model-based performance-driven software
adaptation. In 2015 11th International ACM SIGSOFT Conference on Quality of Software Architectures (QoSA). 11–20.

[7] M. Arlitt and T. Jin. 2000. A Workload Characterization Study of the 1998 World Cup Web Site. Netwrk. Mag. of Global
Internetwkg 14, 3 (2000), 30–37.

[8] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David
Patterson, Ariel Rabkin, Ion Stoica, et al. 2010. A view of cloud computing. Commun. ACM 53, 4 (2010), 50–58.

[9] L. Baresi and S. Guinea. 2013. Event-Based Multi-level Service Monitoring. In 2013 IEEE 20th International Conference
on Web Services. 83–90.

[10] Luciano Baresi, Sam Guinea, Alberto Leva, and Giovanni Quattrocchi. 2016. A discrete-time feedback controller for
containerized cloud applications. (2016), 217–228.

[11] C. Barna, M. Fokaefs, M. Litoiu, M. Shtern, and J. Wigglesworth. 2016. Cloud Adaptation with Control Theory in
Industrial Clouds. In 2016 IEEE International Conference on Cloud Engineering Workshop (IC2EW). 231–238.

[12] Cornel Barna, Hamzeh Khazaei, Marios Fokaefs, and Marin Litoiu. 2017. Delivering Elastic Containerized Cloud
Applications to Enable DevOps. IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS 2017 (2017), 65–75.

[13] Cornel Barna, Hamzeh Khazaei, Marios Fokaefs, and Marin Litoiu. 2017. A DevOps Architecture for Continuous
Delivery of Containerized Big Data Applications. In International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). IEEE.

[14] Cornel Barna, Marin Litoiu, Marios Fokaefs, Mark Shtern, and Joe Wigglesworth. 2018. Runtime Performance
Management for Cloud Applications with Adaptive Controllers. In Proceedings of the 2018 ACM/SPEC International
Conference on Performance Engineering (Berlin, Germany). ACM, New York, NY, USA, 176–183.

[15] Xiaolin Chang, Ruofan Xia, Jogesh K Muppala, Kishor S Trivedi, and Jiqiang Liu. 2016. Effective modeling approach
for IaaS data center performance analysis under heterogeneous workload. IEEE Transactions on Cloud Computing 6, 4
(2016), 991–1003.

[16] S. Chen and S. A. Billings. 1992. Neural networks for nonlinear dynamic system modelling and identification. Internat.
J. Control 56, 2 (1992), 319–346.

[17] Long Cheng, Weichuan Liu, Zeng Guang Hou, Junzhi Yu, and Min Tan. 2015. Neural-Network-Based Nonlinear Model
Predictive Control for Piezoelectric Actuators. IEEE Transactions on Industrial Electronics 62, 12 (2015), 7717–7727.

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

xx:26 M. Sabuhi et al.

[18] George Cybenko. 1989. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and
systems 2, 4 (1989), 303–314.

[19] David Desmeurs, Cristian Klein, Alessandro Vittorio Papadopoulos, and Johan Tordsson. 2015. Event-Driven Applica-
tion Brownout: Reconciling High Utilization and Low Tail Response Times. International Conference on Cloud and
Autonomic Computing (2015), 1–12.

[20] Docker . 2018. Create a Docker Swarm manager. https://docs.docker.com/swarm/reference/manage/
[21] Jonas Durango, Manfred Dellkrantz, Martina Maggio, Cristian Klein, Alessandro Vittorio Papadopoulos, Francisco

Hernandez-Rodriguez, Erik Elmroth, and Karl Erik Arzen. 2014. Control-theoretical load-balancing for cloud ap-
plications with brownout. Proceedings of the IEEE Conference on Decision and Control 2015-Febru, February (2014),
5320–5327.

[22] S. Farokhi, P. Jamshidi, D. Lucanin, and I. Brandic. 2015. Performance-Based Vertical Memory Elasticity. In 2015 IEEE
International Conference on Autonomic Computing. 151–152.

[23] Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolás D’Ippolito, Ilias Gerostathopoulos, An-
dreas Berndt Hempel, Henry Hoffmann, Pooyan Jamshidi, Evangelia Kalyvianaki, Cristian Klein, Filip Krikava, Sasa
Misailovic, Alessandro V. Papadopoulos, Suprio Ray, Amir M. Sharifloo, Stepan Shevtsov, Mateusz Ujma, and Thomas
Vogel. 2017. Control strategies for self-adaptive software systems. ACM Transactions on Autonomous and Adaptive
Systems 11, 4 (2017), 1–31.

[24] M. Fokaefs, Y. Rouf, C. Barna, and M. Litoiu. 2017. Evaluating Adaptation Methods for Cloud Applications: An Empirical
Study. In 2017 IEEE 10th International Conference on Cloud Computing (CLOUD). 632–639.

[25] Ian Gergin, Bradley Simmons, and Marin Litoiu. 2014. A decentralized autonomic architecture for performance control
in the cloud. Proceedings - 2014 IEEE International Conference on Cloud Engineering, IC2E 2014 (2014), 574–579.

[26] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep learning. Vol. 1. MIT press Cambridge.
[27] Google. 2020. Benchmarks for Linux VM instances. https://cloud.google.com/compute/docs/benchmarks-linux Last

accessed 2020-09-20.
[28] Google, Inc. 2019. Manage a cluster of Linux containers as a single system to accelerate Dev and simplify Ops.

http://kubernetes.io/
[29] Beitao Guo, Hongyi Liu, Zhong Luo, and Fei Wang. 2009. Adaptive PID controller based on BP neural network. IJCAI

International Joint Conference on Artificial Intelligence 2 (2009), 148–150.
[30] Heyman, Jonatan and Bystrom, Carl and Hamren, Joakim and Heyman, Hugo. 2019. Locust - A modern load testing

framework. http://locust.io/ Last accessed 2019-10-16.
[31] Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. 1989. Multilayer feedforward networks are universal

approximators. Neural networks 2, 5 (1989), 359–366.
[32] Emilio Incerto, Mirco Tribastone, and Catia Trubiani. 2017. Software performance self-adaptation through efficient

model predictive control. ASE 2017 - Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering (2017), 485–496.

[33] Emilio Incerto, Mirco Tribastone, and Catia Trubiani. 2018. Combined Vertical and Horizontal Autoscaling Through
Model Predictive Control. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 11014 LNCS (2018), 147–159.

[34] Engin Ipek, Bronis R De Supinski, Martin Schulz, and Sally A McKee. 2005. An approach to performance prediction
for parallel applications. In European Conference on Parallel Processing. Springer, 196–205.

[35] Pooyan Jamshidi, Amir Sharifloo, Claus Pahl, Hamid Arabnejad, Andreas Metzger, and Giovani Estrada. 2016. Fuzzy
self-learning controllers for elasticity management in dynamic cloud architectures. In 2016 12th International ACM
SIGSOFT Conference on Quality of Software Architectures (QoSA). IEEE, 70–79.

[36] Hamzeh Khazaei, Jelena Misic, and Vojislav Misic. 2013. A Fine-Grained Performance Model of Cloud Computing
Centers. IEEE Transactions on Parallel and Distributed Systems 24, 11 (Nov 2013), 2138–2147.

[37] Hamzeh Khazaei, Jelena Misic, Vojislav Misic, and S. Rashwand. 2013. Analysis of a Pool Management Scheme for
Cloud Computing Centers. IEEE Transactions on Parallel and Distributed Systems 24, 5 (May 2013), 849–861.

[38] Hamzeh Khazaei, Jelena Misic, and Vojislave B Misic. 2011. Modelling of cloud computing centers using M/G/m queues.
In 2011 31st International Conference on Distributed Computing Systems Workshops. IEEE, 87–92.

[39] Hamzeh Khazaei, Jelena Misic, and Vojislav B Misic. 2011. Performance analysis of cloud computing centers using
m/g/m/m+ r queuing systems. IEEE Transactions on parallel and distributed systems 23, 5 (2011), 936–943.

[40] Hamzeh Khazaei, Jelena Misic, and Vojislav B Misic. 2012. A fine-grained performance model of cloud computing
centers. IEEE Transactions on parallel and distributed systems 24, 11 (2012), 2138–2147.

[41] Hamzeh Khazaei, Jelena Misic, and Vojislav B Misic. 2012. Performance of cloud centers with high degree of virtualiza-
tion under batch task arrivals. IEEE Transactions on Parallel and Distributed Systems 24, 12 (2012), 2429–2438.

[42] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. arXiv:cs.LG/1412.6980

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

https://docs.docker.com/swarm/reference/manage/
https://cloud.google.com/compute/docs/benchmarks-linux
http://kubernetes.io/
http://locust.io/
http://arxiv.org/abs/cs.LG/1412.6980

Optimizing the Performance of Containerized Cloud Software Systems using Adaptive PID-Controllers xx:27

[43] Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco Hernández-Rodriguez. 2014. Brownout: building more
robust cloud applications. Proceedings of the 36th International Conference on Software Engineering - ICSE 2014 (2014),
700–711.

[44] Harold C. Lim, Shivnath Babu, Jeffrey S. Chase, and Sujay S. Parekh. 2009. Automated Control in Cloud Computing:
Challenges and Opportunities. In Proceedings of the 1st Workshop on Automated Control for Datacenters and Clouds
(Barcelona, Spain) (ACDC ’09). ACM, New York, NY, USA, 13–18.

[45] Martina Maggio, Cristian Klein, and Karl Erik Årzén. 2014. Control strategies for predictable brownouts in cloud
computing. IFAC Proceedings Volumes (IFAC-PapersOnline) 19 (2014), 689–694.

[46] Saif UR Malik, Samee U Khan, and Sudarshan K Srinivasan. 2013. Modeling and analysis of state-of-the-art VM-based
cloud management platforms. IEEE Transactions on Cloud Computing 1, 1 (2013), 1–1.

[47] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent development and deployment. Linux Journal
2014, 239 (2014), 2.

[48] Mesosphere, Inc. 2018. Marathon Recipes. https://mesosphere.github.io. https://mesosphere.github.io/marathon/docs/
recipes

[49] Tommi Nylander, Cristian Klein, Karl Erik Årzén, and Martina Maggio. 2018. BrownoutCC: Cascaded Control for
Bounding the Response Times of Cloud Applications. Proceedings of the American Control Conference 2018-June (2018),
3354–3361.

[50] Fernando Ornelas-Tellez, J. Jesus Rico-Melgoza, Angel E. Villafuerte, and Febe J. Zavala-Mendoza. 2019. Neural
Networks: A Methodology for Modeling and Control Design of Dynamical Systems. Elsevier Inc. 21–38 pages.

[51] Alessandro Vittorio Papadopoulos, Cristian Klein, Martina Maggio, Jonas Dürango, Manfred Dellkrantz, Francisco
Hernández-Rodriguez, Erik Elmroth, and Karl Erik Årzén. 2016. Control-based load-balancing techniques: Analysis
and performance evaluation via a randomized optimization approach. Control Engineering Practice 52 (2016), 24–34.

[52] Haiyang Qian, Deep Medhi, and Kishor Trivedi. 2011. A hierarchical model to evaluate quality of experience of online
services hosted by cloud computing. In 12th IFIP/IEEE International Symposium on Integrated Network Management (IM
2011) and Workshops. IEEE, 105–112.

[53] Shashank Shekhar, Hamzah Abdel-Aziz, Anirban Bhattacharjee, Aniruddha Gokhale, and Xenofon Koutsoukos. 2018.
Performance interference-aware vertical elasticity for cloud-hosted latency-sensitive applications. In 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD). IEEE, 82–89.

[54] Stepan Shevtsov, Mihaly Berekmeri, DannyWeyns, and Martina Maggio. 2017. Control-theoretical software adaptation:
A systematic literature review. IEEE Transactions on Software Engineering 44, 8 (2017), 784–810.

[55] Stepan Shevtsov, Mihaly Berekmeri, DannyWeyns, and Martina Maggio. 2018. Control-theoretical software adaptation:
A systematic literature review. IEEE Transactions on Software Engineering 44, 8 (2018), 784–810.

[56] Bartlomiej Sniezynski, Piotr Nawrocki, Michal Wilk, Marcin Jarzab, and Krzysztof Zielinski. 2019. VM Reservation
Plan Adaptation Using Machine Learning in Cloud Computing. Journal of Grid Computing (2019), 1–16.

[57] Giovanni Toffetti, Sandro Brunner, Martin Blöchlinger, Josef Spillner, and ThomasMichael Bohnert. 2017. Self-managing
cloud-native applications: Design, implementation, and experience. Future Generation Computer Systems 72 (2017),
165–179.

[58] Amjad Ullah, Jingpeng Li, Yindong Shen, and Amir Hussain. 2018. A control theoretical view of cloud elasticity:
taxonomy, survey and challenges. Cluster Computing 21, 4 (2018), 1735–1764.

[59] W3Techs. 2019. Usage statistics andmarket share ofWordPress. https://w3techs.com/technologies/details/cm-wordpress/
all/all

[60] Kaiqi Xiong and Harry Perros. 2009. Service performance and analysis in cloud computing. In 2009 Congress on
Services-I. IEEE, 693–700.

ACM Trans. Autonom. Adapt. Syst., Vol. xx, No. xx, Article xx. Publication date: x 2021.

https://mesosphere.github.io
https://mesosphere.github.io/marathon/docs/recipes
https://mesosphere.github.io/marathon/docs/recipes
https://w3techs.com/technologies/details/cm-wordpress/all/all
https://w3techs.com/technologies/details/cm-wordpress/all/all

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	3.1 Cloud Software System Performance modelling
	3.2 Non-adaptive Control Theoretical Auto-Scaling
	3.3 Adaptive Control Theoretical Auto-Scaling

	4 Methodology
	4.1 Performance Modelling
	4.2 Controller Design

	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Methodology
	5.3 Experimental Results
	5.4 Step-Change Workload
	5.5 FIFA World-Cup Workload

	6 Limitations
	7 Conclusion and Future Work
	References

