
Multi-Versioning and Microservices:

A Strategy for Developing Reliable Software Systems

Nazanin Akhtarian

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE

GRADUATE PROGRAM IN ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

YORK UNIVERSITY

TORONTO, ONTARIO

October 2023

Abstract

In the dynamic realm of software engineering, adaptability is key to sustaining

system performance and reliability. Software iterations often bring about chal-

lenges such as unexpected bugs and performance issues, necessitating a nuanced

approach to maintain system integrity. In this work, we propose employing soft-

ware multi-versioning to enhance system reliability. We embark on an in-depth

exploration of the reliability of microservices within chaotic environments. Us-

ing Chaos Mesh, we simulate a series of disruptions in a microservices-based

application, i.e., the Online Boutique. Through real experimentation, we system-

atically introduce various chaos disruptions, such as Pod failures, response delay,

and memory stress, to investigate their impact on the system’s reliability.

We define a reliability metric that quantifies the robustness and efficiency of

each software version under adverse conditions. Leveraging this metric, we in-

troduce a dynamic controller that adjusts the population of each version, ensuring

optimal resource distribution, reliability and system performance. Additionally,

our research evaluates how the system adapts to varying workloads. We investi-

gate how well the system can adjust its scalability—specifically, the number of

replicas—in response to changes in CPU usage as the user load fluctuates. Our

findings demonstrates the system’s capability to scale dynamically based on work-

ii

load demands, ensuring robustness and efficiency.

In conclusion, our study provides a detailed framework for employing soft-

ware multi-versioning as a means to enhance system reliability. By devising a

reliability metric and implementing a dynamic scaling system that responds to

both reliability assessments and workload variations, we offer a comprehensive

strategy to fortify systems against the unpredictable nature of software evolution,

ensuring they remain resilient and make efficient use of resources.

iii

Preface

The research presented in this thesis is the original work of Nazanin Akhtarian,

and it has been conducted in collaboration between the Performant and Available

Computing Systems (PACS) Lab led by Dr. Hamzeh Khazaei and the Centre for

Research in Adaptive Software (CERAS) Lab led by Dr. Marin Litoiu.

iv

Acknowledgement

First and foremost, I want to extend my profound thanks to my supervisors, Dr.

Hamzeh Khazaei and Dr. Marin Litoiu, for their guidance and assistance during

my postgraduate journey. Their constant presence and invaluable advice have

been instrumental to my research. Without their help, achieving my goals would

have been impossible.

I’m also grateful to my peers and associates in the Performant and Available

Computing Systems (PACS) Lab and Centre for Research in Adaptive Software

(CERAS) Lab, whose assistance has been essential throughout my academic jour-

ney.

Lastly, a big thank you goes out to my parents, whose continual support and

motivation have been the backbone of my life’s journey.

v

Table of Contents

Abstract . ii

Preface . iv

Acknowledgements . v

Table of Contents . vi

List of Figures . x

List of Tables . xiii

List of Abbreviations . xiv

Chapter 1: Introduction . 1

1.1 Software Multi-Versioning . 2

1.2 Microservices . 3

1.3 Auto-Scaling . 4

1.4 Load Balancing . 6

1.5 Utility Function . 7

1.6 Objectives and Contributions . 14

vi

1.7 Thesis Outline . 15

Chapter 2: Related Work . 16

2.1 Software Multi-Versioning . 16

2.2 Software Multi-Versioning for Containerized Applications 18

2.3 Microservices in Action . 19

2.4 Reliability for Microservices . 21

2.5 Auto-Scaling Approaches . 26

Chapter 3: Methodology . 34

3.1 System Architecture . 36

3.2 The Scaling Engine . 37

3.2.1 Automated Load Balancer Configuration Updater 38

3.2.2 Reliability Scoring System 38

3.2.3 Replica Adjustment . 43

3.2.4 Adaptive Scaling for Dynamic Workloads 45

3.3 Diversity Factor: Quantifying Version Variation 50

3.3.1 Definition . 51

3.3.2 Implications and Usage 52

3.4 The Load Generator . 53

3.5 The System’s Parameters Configuration 54

vii

Chapter 4: Experimental Evaluation. 60

4.1 Experimental Setup . 60

4.2 Subject System . 61

4.2.1 Critical Microservice Identification 61

4.3 Scaling Engine Configuration . 65

4.4 Workload . 66

4.5 Chaos Mesh . 68

4.6 Chaos Injection . 70

4.6.1 Chaos Types . 71

4.7 Monitoring Metrics with Prometheus 72

4.8 Experimental Discussion . 73

4.8.1 Experiment 1: Evolution under Constant Workload 73

4.8.2 Experiment 2: Dynamic Scaling based on Workload . . . 79

Chapter 5: Discussions and Future Works 82

5.1 Threats to Validity . 82

5.1.1 External Validity . 82

5.1.2 Internal Validity . 83

5.1.3 Construct Validity . 83

5.2 Future Work . 84

viii

Chapter 6: Conclusions . 85

Bibliography . 86

ix

List of Figures

Figure 1.1 Comparison of utility functions: Logarithmic, exponential,

and linear. 13

Figure 3.1 System architecture diagram. This diagram illustrates the

overall structure of the proposed system, detailing component in-

teractions and data flow paths. 37

Figure 3.2 A snapshot of the Locust load testing tool’s User Interface

(UI), demonstrating the settings and parameters available for sim-

ulating user traffic. 54

Figure 4.1 Online Boutique microservices layout. This visualization

showcases the layout and interconnections of various microser-

vices in the Online Boutique application. Each microservice plays

a distinct role in ensuring the seamless functioning of the entire

application. 62

Figure 4.2 Online Boutique application home page. 63

x

Figure 4.3 Online Boutique application checkout page. 63

Figure 4.4 Restart count of frontend microservice versions. This chart

illustrates the frequency and patterns of system restarts over a spe-

cific period. 75

Figure 4.5 Memory usage over time (measured in MB). This graph

provides a comprehensive look at the memory consumption pat-

terns for different frontend deployments. 75

Figure 4.6 Replica and reliability over time. The bar chart illustrates

the number of replicas for different frontend microservice ver-

sions over time. Adjacent vertical lines, differentiated by line

style, represent the reliability scores for each version. 76

Figure 4.7 Application’s response time during the first experiment. . . 76

Figure 4.8 Request statistics overview. This chart presents a detailed

breakdown of request metrics, including successful requests, fail-

ures, and other pertinent statistics over a specified period. 77

Figure 4.9 Locust request analysis. This chart showcases the load test

results using Locust, detailing request success rates and failures. . 77

xi

Figure 4.10 Number of users. This chart presents the number of active

users accessing the system over a specific duration for the first

experiment. 78

Figure 4.11 Number of users. This chart presents the number of active

users accessing the system over a specific duration for the second

experiment. 80

Figure 4.12 Application’s response time during the second experiment. 80

Figure 4.13 Average CPU utilization of frontend microservice Pods

over time. 80

Figure 4.14 Dynamic scaling of frontend microservice Pods. This chart

visualizes the system’s dynamic scaling capabilities in response

to varying workloads, highlighting the changes in the number of

replicas over time. The system’s adaptability to workload fluctu-

ations is evident from the shifts in replica counts. 81

xii

List of Tables

Table 4.1 Description of the Online Boutique application microservices 64

Table 4.2 Comprehensive list of microservices used in the study, with

bold indicating custom-developed services pivotal to the research’s

innovative approach. 67

xiii

List of Abbreviations

ARIMA AutoRegressive Integrated Moving Average

Bi-LSTM Bidirectional Long Short-Term Memory

CPU Central Processing Unit

DF Diversity Factor

DNS Domain Name System

HPA Horizontal Pod Auto-scaler

HTTP Hypertext Transfer Protocol

IoT Internet of Things

LSTM Long Short-Term Memory

MTTF Mean Time To Failure

xiv

OS Operating System

RAM Random Access Memory

UI User Interface

VM Virtual Machine

xv

Chapter 1

Introduction

In today’s world, software systems are an integral part of our daily lives, powering

many applications. The continuous evolution of technology and the growing de-

mands for high performance, availability, and security require advanced software

development and deployment strategies. One such strategy that has emerged is

software multi-versioning, which could enhance system adaptability, reliability,

and performance. In the following sections, we will explain this thesis’s core con-

cepts and terms, namely, software multi-versioning, microservices, auto-scaling,

load balancing, and utility functions. Finally, we discuss our contributions and

provide an outline of the thesis.

1

1.1 Software Multi-Versioning

Software multi-versioning is a development and deployment strategy that involves

maintaining multiple versions of a software. It allows the system to select and

execute the most appropriate version of a software based on the current condition.

This approach can improve performance, fault tolerance, reliability, security, and

availability.

• Performance optimization: In situations where system workloads or hard-

ware constraints vary, having multiple software component versions can

help balance performance and resource utilization. A lightweight version

can be employed during periods of high demand or on resource-constrained

devices. Conversely, a resource-intensive version can provide more accurate

results during periods of low demand or on more capable devices.

• Fault tolerance and reliability: Multi-versioning can increase fault toler-

ance and reliability in critical systems such as flight control. By maintaining

multiple software component versions, developers can provide redundancy,

ensuring continuous operation by preventing common bug failure.

• Security: Software multi-versioning can enhance the security of a system

by offering alternative versions with varying security features. If a vulner-

2

ability is discovered in one version, another version can mitigate the risk

until the issue is resolved.

• Availability and adaptability: Multi-versioning can improve the availabil-

ity and adaptability of a software system by providing different versions

suited for diverse user needs or environments. For instance, a feature-rich

version can be available for users with high-end hardware. In contrast, users

with lower-end hardware or limited connectivity can be offered a simplified

version.

1.2 Microservices

Microservices have become an essential paradigm in software design and archi-

tecture. Microservices architecture breaks down a complex system into smaller

and independent services. Each microservice has its own functionality and can

be developed, deployed, and scaled independently, allowing for better resource

utilization and cost efficiency [1]. This approach allows for greater flexibility,

scalability, and maintainability compared to traditional monolithic architectures.

In addition, microservices can be developed using different technologies and pro-

gramming languages, allowing teams to choose the most suitable tools for each

3

service. Given this structure, software multi-versioning can be more selectively

applied to individual components rather than the system as a whole. So, in this

work, we choose our subject system an application with microservice architecture.

1.3 Auto-Scaling

As we delve deeper into the paradigms of software multi-versioning and microser-

vices, it becomes essential to understand the scaling approaches that stand as the

backbone in ensuring optimal performance and resource utilization. Elasticity is

the key component of cloud computing that lets application owners to control un-

predictable workloads that are inherent in internet-based services [2]. This can

be done by increasing or reducing resources based on the workload to enhance

service performance while lowering costs [3]. In environments where workloads

fluctuate, being able to scale the resources dynamically, both at the microservices

level and across different software versions, is vital. In this context, our focus is

on effectively scaling Pod replicas to address variations in workload and maintain

service stability.

The importance of auto-scaling algorithms in cloud computing is increasing.

Properly provisioning and de-provisioning these replicas is essential, as under-

4

provisioning can lead to performance degradation and service unavailability, re-

sulting in potential revenue loss for providers [4]. Conversely, over-provisioning

results in resource wastage and becomes cost-inefficient due to pay-per-use pric-

ing. Therefore, auto-scaling is essential in optimizing Pod replica resources and

avoiding service level objective (SLO) violations.

Auto-scaling refers to a dynamic resource acquisition and release procedure

that may be divided into two categories: proactive and reactive [5]. Reactive

techniques analyze the system’s current status and decide about the scaling based

on predefined rules or thresholds. Proactive techniques examine the historical

data, predict the future, and perform scaling decisions in advance. The disadvan-

tage of the reactive strategy is that it will respond to a change in workload after it

has already occurred. As a result, the system must take some time to reconfigure

itself to handle the increased workload. On the other hand, in the proactive strate-

gies, statistical methods such as AutoRegressive (AR), Moving Average (MA),

AutoRegressive Moving Average (ARMA), and AutoRegressive Integrated Mov-

ing Average (ARIMA) are utilized to predict future workloads and prepare scaling

actions ahead of time. However, one of the main drawbacks of proactive auto-

scaling is its reliance on the accuracy of these predictions. Mispredictions can

lead to resource wastage or potential performance degradation. Many existing

5

reactive auto-scaling solutions use rules with thresholds that are based on Cen-

tral Processing Unit (CPU) utilization and memory [6–8]. Implementing reactive

techniques is simple, but deciding on the correct threshold value is challenging

because of the workload fluctuation. For proactive auto-scalers, only a few works

have been done by employing machine learning algorithms [9–11], compared to

the numerous works done by using time series data analysis [12–16]. In the scope

of this work, we primarily employ a reactive auto-scaling approach. The choice

is influenced by the desire to maintain a balance between efficiency, simplicity,

and robustness. A comprehensive discussion on the existing works related to this

topic will be elaborated in section 2.5.

1.4 Load Balancing

Load balancing methods refer to techniques used to distribute incoming network

traffic across multiple servers to ensure that no single server is overwhelmed with

too much traffic. This helps maintain the availability and reliability of applications

and services. Several common load balancing methods include Round Robin,

Least Connections, Least Response Time, IP Hash, and URL Hash [17].

In the real world, it is more common to have uneven servers in load balanc-

6

ing. In this case, utilizing adaptive load balancing or weighted algorithms such

as Weighted Round Robin or Weighted Least Connections would be more help-

ful [18]. Adaptive load balancing is a dynamic and intelligent approach for dis-

tributing network traffic across multiple servers. Unlike traditional load balancing

methods that rely on predetermined algorithms or fixed weights, adaptive load

balancing based on factors like server performance, fluctuations in workload, or

other contextual factors adjusts the distribution of incoming requests to optimize

resource usage and maintain optimal system performance.

In this work, we adopt the approach of adaptive load balancing, specifically

employing the method of Weighted Round Robin to distribute incoming requests

among servers. Utilizing Nginx as the load balancer, we establish the weights fol-

lowing our system’s configuration to ensure a harmonized workload distribution.

Section 3.2.1 presents a detailed discussion of this implementation.

1.5 Utility Function

A utility function is a mathematical representation to quantify the desirability or

value of different system states. It maps system states to a numerical value, in-

dicating the level of utility or "usefulness" each state offers. This function is

7

beneficial for decision-making, as it helps determine the optimal choices or paths

by maximizing (or in some cases, minimizing) the utility value. In brief, the util-

ity function provides a structured way to make informed decisions based on the

perceived value, ensuring that the system operates most efficiently [19].

The selection of an appropriate utility function is a crucial step in software en-

gineering processes, as it directly impacts how system performance is evaluated

and optimized. Our objective is to devise a function that maps lower performance

metric values to higher utilities, thereby favouring systems with better perfor-

mance characteristics. We focus on three critical metrics: response time, memory

consumption, and the number of restarts. Each metric requires a specific approach

to accurately capture the desired behaviour and ensure the utility function effec-

tively guides decision-making towards optimal system configurations.

1. Response Time: Response time is a crucial measure of system perfor-

mance. Lower response times generally indicate a more efficient system,

so we are interested in a utility function that favours lower response times.

Variability in response time is also significant, as consistent response times

are often preferred. We calculate the standard deviation for response time

values; versions with higher standard deviation are assigned a lower nor-

malized utility value.

8

2. Memory Consumption: Monitoring memory consumption provides in-

sights into the efficiency and stability of a software version. While different

software versions may have varied memory requirements, sharp increases

in memory consumption could signal problems, such as memory leaks.

By calculating the standard deviation of memory consumption over time

(e.g., every 30 seconds) we can detect such anomalies. Versions with higher

standard deviation in memory usage are assigned a lower utility, indicating

potential issues.

3. Number of Restarts: The number of restarts is a direct indicator of system

stability. A higher number of restarts usually signals underlying issues.

Consequently, we desire a utility function that rewards systems with fewer

restarts.

The choice of a utility function can be diverse. The specific structure of the

utility function U is determined by the preferences of the individual making the

decision. There is no universally standard form that can be considered the best or

most accurate representation for the preferences of all decision-makers [20].

In our work, some of the utility functions that can be chosen include linear,

logarithmic, and exponential functions, among others. We chose a linear utility

9

function in our system for its simplicity and ease of understanding and implemen-

tation. However, different utility functions might suit other preferences. Here are

some of the utility functions that can be utilized with their pros and cons:

Linear Utility Function

This utility function demonstrates a straightforward and proportional correlation

between the metric x and the resultant utility value.

utility(x) =
max(X)− x

max(X)−min(X)
(1.1)

Where:

• X symbolizes the entire range of potential values for the metric.

• x indicates a specific value within this range.

Intuition: Consider a simple slider control. As you move the slider from one

end (min) to the other end (max), the change in position directly and proportion-

ally affects the value it represents. The relationship is consistent throughout.

The linear function is straightforward and easy to use. Yet, if a metric requires

emphasizing lower values more, it might not be the best fit.

10

Exponential Utility Function

This function uses an exponential decay, giving a more noticeable drop in utility

as the metric increases.

Intuition: Think of a car that loses its value faster in the initial years of pur-

chase and slows down as it gets older. The decay in value (or utility) is more

pronounced at the start.

utility(x) = e−λx (1.2)

Where:

• λ is a positive constant determining the decay rate.

The exponential structure is adept at emphasizing a marked preference for

lower metric values. Although its application offers adaptability via the λ param-

eter, it may demand more nuanced calibration and understanding.

Logarithmic Utility Function

This function provides a more gradual decrease in utility as the metric’s value

grows.

Intuition: Imagine charging a smartphone battery. At first, when the battery

11

is very low, it charges up quite rapidly. You might see it jump from 5% to 30%

relatively quickly. But as the battery level approaches 100%, the charging rate

slows down, especially in the last few percentages. It seems to take an especially

long time to move from 95% to 100% compared to the initial rapid increase.

utility(x) =
log(1+max(X)− x)

log(1+max(X)−min(X))
(1.3)

Where:

• X represents the entire set of possible metric values.

• x is a specific metric value from this set.

The logarithmic form is suitable for scenarios that prefer a gentler decrease in

utility. In terms of prioritizing lower metric values, it may not be as assertive as

the exponential counterpart.

12

Figure 1.1: Comparison of utility functions: Logarithmic, exponential, and linear.

In summary, the selection of the utility function is not one-size-fits-all but

must be carefully tailored to the specific needs and characteristics of the system.

As we compute reliability scores for different versions repeatedly, we would like

to choose a utility function whose computation is fast. In addition, as we want

to choose a function that is easy to understand, the linear function is chosen.

Nonetheless, depending on the user’s priorities and the context of the system,

other functions like exponential or logarithmic could also be suitable. A compar-

ison between utility functions is illustrated in Figure 1.1.

13

1.6 Objectives and Contributions

This work addresses the challenges of maintaining system reliability in dynamic,

cloud-native environments, specifically those orchestrated using Kubernetes. By

proposing a solution grounded in the principles of software multi-versioning, we

seek to provide a resilient approach to handling variable service demands without

compromising system performance. Our key contributions are:

1. Conceptualization of Multi-version Containers: A unique approach that

employs multi-versioning transparently at the container level, ensuring that

users interact with services without awareness of underlying versions.

2. Evolutionary Scaling Approach: An innovative framework inspired by

natural selection principles to enhance Kubernetes Pod scaling, ensuring

that more reliable deployments are allocated additional resources.

3. Reliability Scoring Mechanism: Development of a dynamic scoring sys-

tem that employs real-time metrics to evaluate the reliability of Kubernetes

deployments. This mechanism informs system decisions, from load distri-

bution to scaling.

4. Adaptive Scaling: An approach to ensure optimal system performance

14

amidst fluctuating demands. This strategy combines real-time monitoring,

threshold-based decisions, and a historical analysis-based algorithm.

5. Diversity Emphasis: Introduction of the Diversity Factor (DF), which quan-

tifies software version distribution, advocating for a balanced deployment

approach over a solely reliability-centric one.

6. Configurable Deployment: Providing a customizable deployment config-

uration to fit specific user requirements.

Our contributions offer a comprehensive solution for system reliability in Ku-

bernetes environments, laying the foundation for future cloud-native application

advancements.

1.7 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 presents the related

work. In Chapter 3, we explain about our methodology. In Chapter 4, we discuss

the evaluation of our proposed methods by way of real implementation on the

cloud. Chapter 5 lists our contributions, explains the threats to the validity and

elaborates on the possible future directions for this research. Finally, a conclusion

summarizing the benefits of the proposed approach is provided in Chapter 6.

15

Chapter 2

Related Work

In this section, we discuss prior work that is related to this thesis. In particular, we

discuss related work on software multi-versioning, software multi-versioning for

containerized systems, microservices in action, reliability for microservices, and

scaling techniques.

2.1 Software Multi-Versioning

Software multi-versioning is a technique that involves creating multiple versions

of a software program that are functionally equivalent but differ in implementa-

tion and/or design. Researchers have investigated the potential benefits of soft-

ware multi-versioning for a variety of purposes, including enhancing a system’s

16

security, safety, reliability, and availability. Larsen et al. [21] examined the im-

pact of automated software redundancy on system security, while Franz et al. [22]

utilized software multi-versioning as a defence mechanism. They suggested that

having multiple versions of a system could make it more difficult for attackers to

target a specific version, thereby improving system security.

Persaud et al. [23] used genetic algorithms to enhance security by employing

software redundancy. Cigsar et al. [24] investigated the use of software multi-

versioning to improve the reliability of repairable systems, and Gracie et al. [25]

noted that redundancy has been employed for safety purposes. Gorbenko et al.

[26] applied software multi-versioning to a web service to improve its functional-

ity and features, such as availability and reliability.

Overall, software multi-versioning has been utilized for various purposes and

has been shown to have potential benefits in improving the security, reliability, and

availability of software systems. Borck et al. [27] propose FEVIS, a program di-

versification approach for detecting new cyber attacks. FEVIS generates program

variants and runs them in parallel to detect attacks through behavior divergence.

The authors provide a proof of concept and describe the application of FEVIS to

an open-source web server, demonstrating its ability to detect multiple classes of

attacks.

17

2.2 Software Multi-Versioning for Containerized Ap-

plications

Software multi-versioning for containerized systems refers to the practice of man-

aging and deploying multiple versions of software within container environments.

Prior research has primarily utilized software multi-versioning in containerized

systems to enhance fault tolerance [28, 29], security, and reliability [30].

Wang et al. [28] proposed using multi-versioning on critical components of

cloud-based software to improve fault tolerance, reducing cost and complexity by

applying it selectively. Meanwhile, Zheng et al. [29, 30] demonstrated that multi-

versioning can improve reliability and fault tolerance in service-oriented systems.

However, multi-versioning can affect the system’s quality of service, and Zheng et

al. proposed an optimization problem to maintain the system’s quality of service

while improving reliability.

Gholami et al. [31] explored a cost-effective approach to meet the performance

requirements of containerized software systems. They introduced DockerMV

(Docker with Multi-Versioning), an open-source extension of the Docker frame-

work that supports multi-versioning of containerized software systems. They used

different versions of a microservice (light-weight or heavy-weight), primarily for

18

the purpose of scaling the application.

In the context of microservices and Kubernetes, Mohamed and El-Gayar [32]

evaluated the end-to-end latency prediction of microservices workflows. They

compare different machine learning models and resource metrics to predict the

performance of containerized applications. Pinto et al. [33] evaluated the user

acceptance testing for multi-tenant cloud applications and investigate the detection

of faults in different variants of the application.

2.3 Microservices in Action

Microservices architecture breaks down a complex system into smaller and inde-

pendent services. Each microservice has its own functionality and can be devel-

oped, deployed, and scaled independently. There are many new research studies

exploring the use of the microservices for building different applications.

Timur et al. [34] proposed a scalable solution for deploying deep learning fa-

cial recognition systems using distributed microservices. By using Docker for

containerization, they distributed data processing tasks across a scalable clus-

ter. Lu et al. [35] presented microservice-based platform for Space Situational

Awareness (SSA) data analytics. The platform’s efficacy was tested through two

19

experimental applications, which were built to handle complex computations and

provide insights into satellite coverage and space object conjunction assessment.

Asaithambi et al. [36] presented a Microservice-Oriented Big Data Architecture

(MOBDA). The aim was to create a scalable system that can handle large-scale

transportation data effectively, thereby enhancing the management and optimiza-

tion of the public transport system. The authors carried out the evaluation part by

focusing on Singapore’s public transport system, using data from the Singapore

Land Transport Authority (LTA) DataMall. Ali et al. proposed a microservices-

oriented strategy to offer effective data analytics solutions in the form of modu-

lar microservices [37]. The researchers divided the data analytics procedure into

key steps and established them as independent microservices. The use case sce-

nario was related to monitoring health conditions using Internet of Things (IoT) in

real-time, which can help in predicting health situations and offering personalized

services.

In [38], the authors proposed a new federated DL model (Fed-TH) for detect-

ing and classifying cyber threats in industrial IoT. They utilized a container-based

edge computing framework and explored microservice placement methods to ad-

dress latency issues. The model’s effectiveness was validated using two datasets,

ToN_IoT [39] and LITNET-2020 [40], demonstrating high accuracy and perfor-

20

mance in detecting cyber threats. Trilles et al. proposed an IoT architecture that

brings together diverse IoT devices and tools into one ecosystem [41]. Their pro-

posed architecture uses microservices and serverless technologies, aiming to guar-

antee scalability, stability, and reusability. The authors applied their proposed IoT

architecture in viticulture. They developed a system called "SEnviro for Agricul-

ture" which is designed to monitor environmental conditions, particularly vine-

yards, aiming to enhance the quality of the production. Xu et al. [42] proposed

BlendSM-DDM, a decentralized security services architecture for decentralized

data marketplaces, combining containerized microservices and blockchain tech-

nology. They aimed to provide a decentralized, scalable, and auditable data ex-

change platform.

2.4 Reliability for Microservices

Many research have been done in recent years to improve the availability and

reliability of microservices. Vincenzo and Dragi [43] introduced a new technique

for task unloading using Pareto optimization, focusing on three goals: response

time, reliability, and cost.

Clab et al. [44] suggested a delay adaptive strategy for replica synchroniza-

21

tion, as well as a recovery method relying on load balancing, to address the issues

of replica synchronization and failed node recovery in cloud applications. Met-

rics such as Mean Time To Failure (MTTF), Rate of Failure Occurrence (RoCoF),

hazard rate, and Probability of Failure on Demand (PoFoD) have been formu-

lated to gauge software reliability. Among these, MTTF and hazard rate are most

applicable for system failure that follows statistical regularity over time.

In Ref. [45], an overall theoretical estimate of MTTF was presented to align

with QoS needs by adjusting redundancy levels. Chen et al. [46] made advance-

ments in cloud service by reducing uncertainty in the scheduling of workflow

applications. In Ref. [47], an algorithm that uses Repetitions in Reserve (RIR) to

minimize redundancy computes workflow reliability without the need to evaluate

the reliability of individual tasks.

Liu et al. in [48] tried maximizing the entire cloud application’s reliability,

focusing more on the microservice with higher criticality. They modelled the

reliability of cloud applications by the fluctuation frequency and amplitude of

reliability in a cycle. In their next work [49], the authors addressed the challenge

of improving the reliability of microservice-based cloud applications. The authors

measured the reliability of a microservice using a two-part strategy, involving

redundancy and the implementation of a circuit breaker. Redundancy ensures

22

backup instances are available to replace any failure, while the circuit breaker

isolates failures to prevent them from affecting other dependent microservices.

In [50], the authors present a model that uses Petri nets to predict reliability.

For a single service, there’s a proposal to predict reliability from four factors:

availability of the network environment, hermit equipment, discovery reliability,

and critical reliability. Zang et al. [51] suggested a method for creating a service

dependency graph to enhance a service fault tree with a reliability model. In

the area of stable, cloud-based software operation, there’s considerable interest in

fault-tolerant technology to improve reliability in uncertain environments.

Gao et al. [52] suggested a dynamic method for mobile e-commerce service

workflow. Others, like Sharif et al. [53] and Yao et al. [54], proposed techniques

to ensure reliability through quality improvement or node normalization. Ray et

al. [55] proposed an innovative scheduling algorithm combining resubmission and

replication, while other strategies, like [56], focus on preempting faults based on

CPU temperature. Shi et al. [57] and Wang et al. [58] offered strategies to en-

sure real-time applications and to measure reliability sensitivity in cloud services,

respectively.

Pietrantuono et al. [59] introduced an in vivo testing technique targeted at as-

sessing the reliability of microservice architecture during its operational phase.

23

Hasselbring and Steinacker [60] developed designs for microservice architectures

with a focus on scalability and reliability, enabling substantial enhancements in

load performance and scalability through the detailed breakdown and decentral-

ized handling of data.

Wang et al. [61] explored an automated fault diagnosis approach using statis-

tics in microservice applications, estimating anomalies in workflow and employ-

ing tree edit distance to identify and locate the specific microservice. An in-depth

analysis of software reliability as a crucial metric was conducted by Wang and

others [62], who also presented a reliability testing procedure as part of the accep-

tance testing phase. Camilli et al. introduced MIPaRT, a methodology to conduct

intergrated performance and reliability testing for microservices [63].

Various works have been done for estimating reliability of IoT systems. The

authors of [64] proposed a reliability model focusing on QoS (Quality of Service)

parameters violations. Their approach incorporates a failure and recovery model

to calculate reliability, emphasizing network aspects. Behera et al. proposed a

method that models reliability by considering system availability, including the

availability of programs, subsystems, and required input data [65].

In [66], authors introduced three redundancy models whose reliability is com-

puted in two ways, through Reliability Block Diagram (RBD) and Reliability

24

Graph (RG). In paper [67] reliability is estimated using a Markov Decision Model

(MDM) in a probabilistic manner. Despite its potential, the complexity of MDMs

for large IoT systems can be computationally demanding. The model in [68]

views an IoT system as a set of interacting instances or “black boxes.” It builds

reliability evaluation on transaction success ratios and it’s heavily dependent on

historical data, limiting its real-time applicability over extended periods.

The author in [69] introduced the Enhanced Real-Time CORE (ERT-CORE),

a real-time reliability model for Multi-Agent IoT Systems (MAIS), characterized

by linear time complexity and efficiency. In this approach, authors computed reli-

ability based on three parameters for their system’s components. The parameters

were workload, average request processing time, and availability. Their specified

components were CPU, RAM, network interface, and storage.

Sabino et al. [70] conducted a systematic literature review on energy con-

sumption in microservices architectures, exploring approaches to improve sys-

tem reliability and manage power consumption. Chen and Xiao [71] designed a

multi-objective and parallel particle swarm optimization algorithm for container-

based microservice scheduling, aiming to improve service reliability and effi-

ciency. Liu et al [72] proposed a reliability modelling and optimization method

for microservice-based cloud applications using a multi-agent system, aiming to

25

maximize reliability and minimize delay within budget constraints.

Despite the variety of studies on reliability, few current research works con-

sider the reliability of microservice-based applications. Specifically, we focus on

enhancing the reliability of containerized systems through multi-versioning.

2.5 Auto-Scaling Approaches

In the rapidly evolving landscape of cloud computing, the strategies for scaling

resources have seen a wide variety of approaches. In this section, we explain

some of the notable strategies in scaling, emphasizing their methodologies and

the outcomes derived from their implementation.

Al-Dhuraibi et al. [7] proposed the ELASTICDOCKER architecture, which is

based on the reactive scaling strategy. ELASTICDOCKER vertically scales both

memory and virtual CPU cores resulting from the workload. The disadvantage of

vertical scaling is its limited resources for hosting the machine capacity. When the

hosting machine does not have enough resources, ELASTICDOCKER executes

a live migration of the container to solve this issue. Their experimental results

showed that this approach helps to reduce expenses for customers, make better

resource utilization, and improve Quality of Experience (QoE).

26

The Horizontal Pod Auto-scaler (HPA) [8] is a control loop in Kubernetes

(K8S) that increases the number of pods based on CPU utilization in the reactive

approach, regardless of how well the workload or application is working. So, by

changing the number of pods, it’ll keeps the overall average CPU usage at the

preferred level.

A cloud workload prediction module utilizing ARIMA was proposed by Ro-

drigo et al. [13], which may dynamically provide virtual machines to handle the

anticipated requests. They used actual HTTP web server request traces from the

Wikimedia Foundation for the performance assessment. This model has 91% ac-

curacy for seasonal data, but it is unsuitable for workload that is not seasonal.

Additionally, the authors didn’t compare this model with any other strategies.

A prediction model employing genetic algorithms (GAs) to combine numer-

ous statistical techniques was proposed by Messias et al. in [16]. To test their

model, they used three logs that were taken from actual web servers. The out-

comes demonstrated that the suggested methodology produces the best outcomes.

The ARIMA model, however, produces the highest result with the best forecast

accuracy when using the NASA web server records [73]. The auto.ari-ma() func-

tion of the R package, suggested in [74], was used to automatically select the value

for p, d, and q, resulting in the construction of the ARIMA model.

27

The authors of [75] used Artificial Neural Networks (ANN) to estimate the

task duration and resource utilization. A crawler was set up to collect the job

length, the number of files, and the size of the GitHub repositories in order to

create the ANN dataset. The ANN model was then offline trained. Comparing the

suggested model to a simple linear prediction model, the prediction error was less

than 20%. However, this model is unsuitable for real world applications because

it was trained offline.

In order to forecast workload in the future, Prachimutita et al. [9] presented

a new autoscaling framework using Artificial Neural Network (ANN) and Recur-

rent Neural Network (RNN) models. They then changed to the required RAM

and CPU core based on the anticipated workload to maintain services in accor-

dance with the Service Level Agreement (SLA). Utilizing multiple-step ahead

forecasting, the performance was assessed using access data from the 1998 World

Cup Web site [76]. The outcome shown that when more steps were forecasted

ahead, the ARIMA model’s accuracy decreased. Additionally, the Long Short-

Term Memory (LSTM) model outperformed the MLP model in terms of accuracy.

An autoscaling architecture based on machine learning was also proposed by Im-

doukh et al. in [10]. The researchers used the 1998 World Cup website dataset

and the LSTM model. They compared their results with those produced by both

28

the ANN model and the ARIMA model. In one-step forecasting, the suggested

LSTM model’s prediction error was found to be somewhat greater than that of the

ARIMA model, while its prediction speed was found to be 530–600 times faster.

Tang et al. [11] proposed a container load prediction model by using the Bidi-

rectional Long Short-Term Memory (Bi-LSTM) approach, which uses the con-

tainer’s past CPU utilization load to predict the future load. Comparing the ac-

curacy of the proposed model to the ARIMA and LSTM models, it showed the

lowest prediction error. The authors did not specify how to set up the param-

eters of the suggested model, though. Additionally, the research solely focuses

on forecasting future load; it does not use it to address auto-scaling issues. A

hybrid elastic scaling technique for Kubernetes was proposed by Ming Yan et

al. [77] by combining reactive and proactive methods. In order to predict future

workload, the proactive strategy uses the Bi-LSTM model to learn the history of

physical host and pod resource usage (CPU and Memory usage). To produce elas-

tic scaling judgements, the Bi-LSTM prediction model is then integrated with the

online reinforcement learning using reactive model. The trials demonstrate that it

can support the system in edge computing environments in meeting the microser-

vice SLA. In comparison to the ARIMA, LSTM, and RNN models, the Bi-LSTM

model also exhibited the lowest prediction error for the root mean square error

29

(RMSE) metric. However, no approach has been taken to mitigate oscillations.

Laszlo Toka et al. [78] proposed using an AI-based forecast method for proac-

tive scaling policy. The Hierarchical Temporal Memory (HTM), LSTM, and AR

techniques are included in their the AI-based forecasting technique. The rate of

incoming web requests is learned and predicted from each model. Additionally,

they suggested the use of a backtesting plugin called HPA+ to seamlessly swap be-

tween the AI-based model and the HPA. The HPA+ will change to HPA and vice

versa if the AI-based model’s performance declines. The findings demonstrate

that the HPA+ can dramatically reduce the amount of requests that are refused at

the expense of slightly higher resource usage.

Dang-Quang and Yoo proposed a system architecture based on the Kubernetes

orchestration system with a proactive custom autoscaler using a deep neural net-

work model to calculate and provide resources ahead of time [5]. The proposed

autoscaler focuses on the analysis and planning phases of the MAPE loop. In the

analysis phase, they used a prediction model based on Bi-LSTM, which learns

from the historical time-series request rate data to predict the future workload.

The proposed model was evaluated through a simulation and the real workload

trace from NASA [73] and FIFA [76]. The planning phase implements cool-

ing down time (CDT) to prevent the oscillation mitigation problem, and when the

30

workload decreases, the scaler uses the resource removal strategy (RRS) to simply

remove an amount of surplus pods to maintain the system stability while handling

it faster if a burst of workload occurs in the next interval. The results of an ex-

periment conducted with different datasets indicate that the proposed prediction

model achieves better accuracy not only than the LSTM model but also than the

state-of-the-art statistical ARIMA model in terms of short- and long-term fore-

casting. The prediction speed is 530 to 600 times faster than that of the ARIMA

model and almost equal compared to the LSTM model when examined with dif-

ferent workloads. Compared to the LSTM model, the Bi-LSTM model performs

better in terms of autoscaler metrics for resource provision accuracy and elastic

speedup. Moreover, when the workload decreases, the architecture was found to

remove a part of pod replicas, thus making it efficient when handling burst of

workload in the near future. Finally, the proposed system design shows better

performance in accuracy and speed than the default HPA of the Kubernetes when

provisioning and de-provisioning resources.

Dogani et al. [79] proposed proactive auto-scaling method in Kubernetes using

an attention-based gated recurrent unit (GRU) encoder-decoder (K-AGRUED).

This technique extracts temporal patterns, in contrast to many existing methods,

and predicts the resource usage of several future steps based on cool-down time

31

(CDT). The results showed that, in comparison to state-of-the-art approaches, the

proposed strategy reduces prediction error by 2-25%. In comparison to two earlier

experiments and Kubernetes’ conventional HPA, their method greatly decreased

scaling operations and under-provisioning. They claimed that K-AGRUED in-

creases the scaling speedup by a factor of up to five in a real environment. For the

evaluation, they used the FIFA [76] and the NASA [73] web server log set.

Dang-Quang and Yoo proposed multivariate deep learning prediction model

to predict future resource workload for cloud computing environment [80]. Their

prediction model uses Bi-LSTM. They did their experiments on real world work-

load dataset of GWA-T-12 Bitbrains and they concluded that the proposed multi-

variate Bi-LSTM model outperforms the univariate Bi-LSTM model in prediction

accuracy. They chose multivariate time series data analysis because that allows

researchers to find relationships between variables, in contrast to univariate time

series data. The authors, in their next work [81], added feature selection step in

their solution. They used the Pearson correlation method to select the best features

as inputs for the multivariate model. They claimed that this new multivariate Bi-

LSTM model outperforms the previous multivariate LSTM model in prediction

accuracy.

Balla et al. [82] presented an auto-scaling mechanism called Libra for applica-

32

tions running on top of Kubernetes. Libra combines both vertical and horizontal

scaling techniques to optimize resource allocation and scaling in cloud computing

environments. Ju et al. introduced a Proactive Pod Autoscaler (PPA) for edge

computing applications that operate within a Kubernetes environment [83]. The

main advantage of PPA over the default Kubernetes autoscaler (HPA) is its ability

to forecast incoming workloads of applications using time series prediction meth-

ods. This proactive approach helped in scaling the applications ahead of time,

based on the predicted load.

33

Chapter 3

Methodology

In the context of modern cloud-native environments, assessing the reliability and

performance of applications deployed on Kubernetes1 can be a challenging task

due to the dynamic and complex nature of such systems. In this work, we develop

an evolutionary approach to Kubernetes Pod scaling. The idea of an evolutionary

approach is inspired by the process of natural selection, where individuals with the

most characteristics suited to their environment have a better chance of survival.

Similarly, in our system, the deployments with the highest reliability scores have

more Pods. In this work, we propose a self-adaptive framework that is based

on the MAPE (monitor, analyze, plan, and execute) concept [84]. Our system

1https://kubernetes.io

34

https://kubernetes.io

continuously monitors the environment, analyzes data, plans actions, and executes

these actions, thereby exhibiting the MAPE loop’s properties.

• Monitor: We use Prometheus for continuous monitoring of the system. It

collects metrics such as the number of Pod restarts and memory consump-

tion. As the average response time metric should be calculated from the

client side, we employ Nginx logs to collect this data. Also, beyond the

system metrics, our monitoring approach extends to continually observing

the system’s workload for scaling decisions.

• Analyze: This is the core of our evolutionary scaling process. Here, we an-

alyze data obtained during the monitoring phase and calculate the reliability

score for each Kubernetes deployment based on a weighted average of three

key metrics. Additionally, we examine the workload to see whether scaling

actions are needed.

• Plan: During this phase, strategies are formulated for upcoming actions.

This includes decisions like adjusting the number of Pod replicas for each

software version, scaling in/out the overall replica count of our software,

or altering the traffic distribution among different software versions. The

foundation for these strategies is the reliability scores determined in the

35

analysis phase.

• Execute: The execution phase in our system involves changing the replicas

and adjusting the load balancer configuration to control the traffic flow.

3.1 System Architecture

This section presents an overview of the system architecture, consisting of two

essential microservices: Load Balancer and Scaling Engine. Figure 3.1 illustrates

the system’s architecture. Our system distributes the workload dynamically based

on the reliability score of microservice versions and manages their replicas ac-

cording to these scores. The load generator component generates and directs

the load to the load balancer. The load balancer, powered by Nginx2, evenly

distributes incoming requests from the load generator across multiple backend

servers representing multi-version microservice. Our scaling engine calculates

the reliability score for each microservice version and adjusts replicas based on

this score. It also continually assesses and changes the overall Pod replica count

based on workload monitoring, enhancing system reliability to variable demands

and optimizing the allocation of resources. Additionally, it provides configura-

2https://www.nginx.com

36

https://www.nginx.com

tions to Nginx for weight distribution. In the following sections, we will explain

these critical microservices in more detail.

Figure 3.1: System architecture diagram. This diagram illustrates the overall
structure of the proposed system, detailing component interactions and data flow
paths.

3.2 The Scaling Engine

Our scaling engine has two main components: an automated load balancer con-

figuration updater and a reliability scoring system. In the following subsections,

we discuss these parts.

37

3.2.1 Automated Load Balancer Configuration Updater

The first component of the system involves the automatic updating of the Nginx

load balancer configuration in response to changes in the reliability scores of Ku-

bernetes deployments. Nginx is a popular open-source tool that can be used as a

reverse proxy, HTTP cache, and load balancer. In this case, Nginx serves as a tool

to manage and distribute incoming application traffic among Kubernetes Pods,

enhancing the application’s ability to handle large traffic volumes. This method

eliminates the risk of any Pod becoming overloaded by equally sharing the work-

load across all Pods. Dynamically updating the Nginx configuration based on the

reliability scores of the deployments guarantees that more traffic goes toward the

most reliable deployments. In other words, deployments with more Pods receive

a larger share of the total workload. As a result, our system’s overall performance

and reliability are significantly improved.

3.2.2 Reliability Scoring System

This module is designed to calculate the reliability scores of different deploy-

ments running on Kubernetes, interfacing with Prometheus to fetch key real-time

metrics. The reliability score for each Kubernetes deployment is computed as a

weighted average of three metrics. The system translates monitored values into

38

an overall reliability assessment by employing a utility function that linearly com-

bines these metrics. To bring more depth to this assessment, we leveraged formal

utility theory to construct a utility function following the methodology proposed

by [85]. Here, we describe the structure of the utility function, detail the met-

rics under consideration, and explain the methodology adopted to compute the

reliability scores.

Utility Function Definition

We define the reliability utility function Ureliability based on the observed metrics

at a given time t as:

Ureliability (θ(t) | φ) =
N

∑
i=1

wi ·ui (θi(t) | φ)

Where:

• θ(t) represents the metrics vector at time t.

• φ denotes a set of additional parameters influencing the utility function.

• wi are the weights assigned to each metric, ensuring ∑
N
i=1 wi = 1.

• ui(θi(t)|φ) are individual utility functions for each metric, further elabo-

rated in the scoring methodology subsection 3.2.2.

39

In our experiments, we consider N = 3 metrics which are detailed in the next

section.

Monitored Metrics

We consider three principal monitoring metrics:

• Number of Restarts: This measures how often the deployment has had to

restart, with a higher number indicating potential instability.

• Response Time Variability: While the average response time sheds light

on the deployment’s responsiveness, its variability is equally crucial. Sig-

nificant fluctuations in response times can indicate unpredictable behaviour

or potential bottlenecks.

• Memory Consumption: By monitoring memory usage, we can detect po-

tential memory leaks or understand how efficiently the deployment utilizes

resources.

The utility functions ui corresponding to each metric are defined using linear

functions, which are detailed in section 1.5.

40

Scoring Methodology

The scoring system is designed to monitor these metrics continuously, calculate

the reliability scores, and adjust the number of Pod replicas accordingly. This

dynamic adjustment means that our system can quickly respond to deployment

performance and reliability changes. The score calculation system involves the

following steps:

1. Metric Retrieval: Fetch raw metrics from Prometheus using specific queries.

2. Metric Normalization: Normalize metrics linearly between 0 and 1. This

uses the utility function u defined for each metric m in the metric set I, for

each deployment d in the deployment set D. The function is:

∀d ∈D,∀m ∈ I : um(d) = 1− metricm(d)−min(metricm(D))

max(metricm(D))−min(metricm(D))
(3.1)

In cases where max(metricm(D)) = min(metricm(D)), we set um(d) = 1.

With this approach, a lower metric value results in a higher normalized

value, thus giving deployments with better performance (lower frequency

of restarts, less variability in response time, and lower memory usage) a

higher reliability score.

41

In addition, the normalization process allows us to meaningfully combine

different metrics, which may initially operate on different scales.

3. Reliability Score Calculation: Compute a weighted average of metric scores

for each deployment’s overall reliability score. Metric weights can vary

based on importance. We assign the following weights to the metrics, but

they can be modified according to the specific requirements.

For each d ∈ D,

Reliability_Score(d) =responseTimeWeight×uresponseTime(d)

+ restartWeight×urestarts(d)

+memoryWeight×umemoryUsage(d)

(3.2)

With current metric weights being:

• restartWeight: 0.5

• memoryWeight: 0.3

• responseTimeWeight: 0.2

The functioning of the reliability scoring and the replica calculation systems

can be understood by referring to Algorithm 1 and Algorithm 2, respectively.

42

Algorithm 1 Monitoring without scaling
Require: Global variable: MONITORING_T IME, ACT ION_T IME

1: while True do
2: if time elapsed is MONITORING_T IME then
3: for deploymentVersion in deploymentVersions do
4: getPrometheusData(deploymentVersion)
5: end for
6: else if time elapsed is ACT ION_T IME then
7: reliability_scores← empty array
8: for deploymentVersion in deploymentVersions do
9: Compute metrics and reliabilityScore for deploymentVersion

10: reliability_scores.add(reliabilityScore)
11: end for
12: ADJUSTREPLICADISTRIBUTION(deploymentVersions)
13: end if
14: end while

3.2.3 Replica Adjustment

In our system, we carry out replica adjustment to optimally distribute the total

number of replicas across multiple software versions. This distribution is guided

by the respective reliability scores of each version. Our approach ensures that

every software version maintains a minimum of one replica. This is important as

reliability can fluctuate over time, and maintaining at least one replica for each

version safeguards against potential failures in other versions.

First, the proportional number of replicas for each software version is calcu-

lated based on its reliability score. If this calculation results in a fraction, the

system considers the fractional part in the subsequent step.

43

Algorithm 2 Adjust replicas distribution based on reliability scores
Require: Global variable: TOTAL_REPLICAS

1: function ADJUSTREPLICADISTRIBUTION(deploymentVersions)
2: total_score← 0.0
3: for score in reliability_scores do
4: total_score← total_score+ score
5: end for
6: newReplicas← array of zeros, one for each deployment version
7: fractionalParts← array of zeros, one for each deployment version
8: allReplicas← 0
9: for index, score in reliability_scores do

10: proportionalReplica← TOTAL_REPLICAS×score
total_score

11: newReplicas[index]← integer part of proportionalReplica
12: fractionalParts[index]← proportionalReplica−newReplicas[index]
13: if newReplicas[index] = 0 then
14: newReplicas[index]← 1
15: end if
16: allReplicas← allReplicas+newReplicas[index]
17: end for
18: Sort indices of fractionalParts in descending order
19: di f f erence← allReplicas−TOTAL_REPLICAS
20: if di f f erence < 0 then
21: for i = 0 to −di f f erence do
22: newReplicas[indices[i]] =+ 1
23: end for
24: else if di f f erence > 0 then
25: for i = len(indices)−1 to len(indices)−di f f erence do
26: if newReplicas[indices[i]] > 1 then
27: newReplicas[indices[i]] =- 1
28: end if
29: end for
30: end if
31: end function

44

Once the proportional replica counts are computed, the system checks if the

sum of these counts (step 8 in Algorithm 2) either exceeds or falls short of the

total replicas. If it exceeds, the system removes excess replicas from versions

with lower fractional parts. If it falls short, the system assigns additional replicas

to versions with higher fractional parts.

Before actual scaling operations are triggered, the system evaluates whether

any significant change in the replica count for any software version has occurred.

Specifically, the system checks if the change exceeds a predetermined threshold

(e.g., 5% of the total replicas). If this condition is met, the adjustment process is

initiated as described in Algorithm 3. This keeps our system efficient and avoids

unnecessary and temporary adjustments.

During the replica adjustment process, the system updates the replica count

for each software version based on the newly calculated figures. Furthermore,

adjustments are made to the Nginx configuration file to guarantee that traffic is

proportionally distributed across the different software versions.

3.2.4 Adaptive Scaling for Dynamic Workloads

While the previous section focused on adjusting replicas based on the reliability

scores of individual deployments, our system also incorporates a mechanism for

45

Algorithm 3 Check for adjusting condition and apply changes
1: T HRESHOLD_PERCENTAGE← 5.0%
2: ad just_replicas← False
3: for each deploymentVersion in deploymentVersions do
4: Get currentReplica and newReplica
5: absoluteDi f f erence← abs(newReplica− currentReplica)
6: percentageDi f f erence← 100∗(absoluteDi f f erence/TOTAL_REPLICAS)
7: if percentageDifference ≥ T HRESHOLD_PERCENTAGE then
8: ad just_replicas← True
9: break

10: end if
11: end for
12: if ad just_replicas = True then
13: for each deploymentVersion in deploymentVersions do
14: Update deploymentVersion with newReplica
15: end for
16: end if

dynamic scaling in response to overall workload changes. This dynamic scaling

capability, detailed in Algorithm 4, is vital to ensure optimal system performance

during periods of variable demand.

Monitoring CPU Utilization

Our system’s active monitoring of CPU utilization, as depicted in step 3 of Al-

gorithm 4, allows us to comprehend the demand placed on our deployments ef-

fectively. By using the Prometheus query, we can continuously gauge the current

CPU usage across all Pods in the multi-version microservice, ensuring our sys-

tem’s performance aligns with the prevailing demand.

46

Algorithm 4 Monitoring with scaling
Require: Global variables:

• MONITORING_T IME, ACT ION_T IME

• MAX_REPLICAS, MIN_REPLICAS

• TOTAL_REPLICAS

1: while True do
2: if elapsed = MONITORING_T IME then
3: currentCPUValue← getCPU()
4: currentScalingState← determineScalingAction(currentCPUValue)
5: scalingHistory.add(currentScalingState)
6: for deploymentVersion in deploymentVersions do
7: getPrometheusData(deploymentVersion)
8: end for
9: else if elapsed = ACT ION_T IME then

10: scalingAction← decideScalingBasedOnHistory(scalingHistory)
11: if scalingAction = Increase & TOTAL_REPLICAS < MAX_REPLICAS then
12: TOTAL_REPLICAS =+ 1
13: else if scalingAction = Decrease & TOTAL_REPLICAS > MIN_REPLICAS

then
14: TOTAL_REPLICAS =- 1
15: end if
16: reliability_scores← empty array
17: for deploymentVersion in deploymentVersions do
18: Compute metrics and reliabilityScore for deploymentVersion
19: reliability_scores.add(reliabilityScore)
20: end for
21: ADJUSTREPLICADISTRIBUTION(deploymentVersions)
22: end if
23: end while

47

Algorithm 5 Scaling action decision-making
Require: Global variables:

1: MAX_CPU ← 60%
2: MIN_CPU ← 20%
3: function DETERMINESCALINGACTION(cpu)
4: if cpu > MAX_CPU then
5: return Increase
6: else if cpu < MIN_CPU then
7: return Decrease
8: else
9: return NoChange

10: end if
11: end function
12: function DECIDESCALINGBASEDONHISTORY(history)
13: increaseCount← 0
14: decreaseCount← 0
15: for action in history do
16: if action = Increase then
17: increaseCount =+ 1
18: else if action = Decrease then
19: decreaseCount =+ 1
20: end if
21: end for
22: if decreaseCount > 2 then
23: return Decrease
24: else if increaseCount > 1 then
25: return Increase
26: else
27: return NoChange
28: end if
29: end function

48

Threshold-Based Approach

Our system employs a threshold-based approach, configured with user-defined

upper and lower CPU utilization limits, to guide scaling decisions. The func-

tion determineScalingAction (steps 3-11 in Algorithm 5) evaluates the current

CPU usage against predefined thresholds. Specifically:

• If CPU usage exceeds 60%, indicating heightened demand, the system ini-

tiates a scale-out operation, augmenting the total replicas by one.

• If CPU usage falls below 20%, reflecting reduced demand, a scale-in oper-

ation is activated, diminishing the total replicas by one.

The strength of this approach is in its flexibility. As will be detailed in Listing

3.1, these thresholds are user-configurable and can be adjusted based on system’s

requirements.

Historical Analysis for Scaling Decisions

Our method of making scaling decisions involves an historical analysis approach

that takes into account past decisions to avoid making hasty scaling decisions that

could lead to system instability or resource wastage.

49

The function determineScalingAction (steps 12-29 in Algorithm 5) per-

forms an analytical review of recent scaling activities. Based on this examination:

• An increase in replicas is triggered if there are more than one recent indica-

tions to scale out.

• Conversely, a decrease is initiated if there are over two recent signals to

scale in.

• In the absence of any strong inclination towards scaling out or in, the system

once again opts for the ’NoChange’ state.

3.3 Diversity Factor: Quantifying Version Variation

As we’ve explored the system’s ability to scale dynamically based on workload,

particularly focusing on CPU utilization, a natural question arises: “Why not sim-

ply increase the replicas of the perceived most reliable version when scaling out?”

The answer lies in the inherent unpredictability of software behaviour. Di-

versifying software versions in a deployment does more than merely distribute

workload; it acts as a strategic defence. By ensuring a mix of different software

versions, we are effectively hedging against unforeseen bugs, vulnerabilities, or

performance issues specific to a single version. Even if a version is perceived as

50

“good” today, software behaviour can be context-sensitive, and what works opti-

mally under one set of conditions might falter under another. Ensuring diversity

ensures that the system remains resilient across broader scenarios, mainly when

unforeseen issues arise. Consequently, the introduction of the Diversity Factor

(DF) is crucial. It quantitatively captures how evenly distributed the software ver-

sions are within our deployment.

3.3.1 Definition

The idea behind the DF is to measure how equally distributed the software ver-

sions are within the replicas. A high DF indicates that the replicas are nearly

equally distributed across different versions, while a low DF signifies an imbal-

ance with some versions being used more than others.

Mathematically, we define the DF as:

DF =
1

σ(R)

where σ(R) represents the standard deviation of the replicas distribution across

different software versions. For simplicity, if there are three software versions

51

V 1, V 2, and V 3, with replica counts R1, R2, and R3 respectively, then

σ(R) =

√
(R1− R̄)2 +(R2− R̄)2 +(R3− R̄)2

3

where R̄ is the average replica count, R̄ = R1+R2+R3
3 .

For maximum diversity, which is when each software version has equal repli-

cas (e.g., 5 replicas each out of 15), the standard deviation σ(R) is 0. This makes

DF → ∞. In practice, this can be capped at a large value or represented as the

maximum possible value. Conversely, for minimum diversity, when one version

is used more than the other two, DF will be at its lowest but always greater than

zero.

3.3.2 Implications and Usage

The DF serves as a compass guiding the dynamic adjustment of replicas. Instead

of mindlessly adding more replicas of a reliable version when scaling out, we

aim for a diverse distribution, ensuring reliability, robust feedback, and proactive

response to potential software pitfalls. This approach champions not only imme-

diate system reliability but also the longevity and future adaptability of the system

in the face of evolving challenges.

52

3.4 The Load Generator

The Online Boutique application has a load generator microservice which con-

tinually sends requests, simulating realistic user shopping patterns directed at the

frontend. We customize this microservice for our specific needs. We use Locust3

which is an open-source, scriptable and scalable performance testing tool that

allows customized test cases using Python. With the integration of Locust, we

introduce enhanced browser-based accessibility, as illustrated in Figure 3.2. This

allows us to easily configure parameters such as the count of concurrent users and

their spawn rates before initiating the workload. Additionally, by adapting the

user wait time within our load generator, we aim to place a more concentrated

load on the frontend microservice, enabling us to better observe and analyze the

system’s overall behaviour under modified conditions.

3https://locust.io

53

https://locust.io

Figure 3.2: A snapshot of the Locust load testing tool’s User Interface (UI),
demonstrating the settings and parameters available for simulating user traffic.

3.5 The System’s Parameters Configuration

In our proposed application, a flexible configuration mechanism has been imple-

mented. This allows users to customize the behaviour of the system based on their

specific needs. This is primarily achieved through the definition and manipulation

of key parameters that control the functionality of our system.

Firstly, the user should create a deployment using our application’s Docker

54

image by applying the corresponding Kubernetes configuration file. Listing 3.1

shows the corresponding command in the Kubernetes system.

Listing 3.1: Applying the deployment file

kubectl apply -f AppDeploymentFile.yaml

The user should then set the environmental variables for the created deployment.

For example, if “ReplicaBalancer” is the deployment name defined in “AppDe-

ploymentFile.yaml”, the command would be as follows:

Listing 3.2: Setting environmental variables

kubectl set env deployment/ReplicaBalancer \

DEPLOYMENT_IMAGES_REPLICAS="imageName1*replica1,imageName2*replica2,..."

TOTAL_REPLICAS=9

MONITORING_TIME=30s

ACTION_TIME=2m

MAX_REPLICAS=24

MIN_REPLICAS=3

MAX_CPU=60

MIN_CPU=20

SCALING=true

55

In this configuration, environmental variables play crucial roles, each detailed

as follows:

• DEPLOYMENT_IMAGES_REPLICAS:

– Purpose: Assigns the initial number of replicas for different Docker

images. This parameter is essential and the system requires it for op-

eration.

– Pattern: The value for this parameter should follow the pattern:

image_owner/image-name:version*number-of-replicas

Where:

* image_owner/image-name:version - Specifies the Docker im-

age

* number-of-replicas - Indicates the desired number of replicas.

– Example: In nazaninakhtarian/buggy-app:latest*5, the Docker

image nazaninakhtarian/buggy-app with the tag latest is allo-

cated 5 replicas.

– Automatic Distribution: If the number of replicas for an image is not

provided, the system evenly distributes the TOTAL_REPLICAS among

56

the specified images. If an even distribution is not possible, the sys-

tem will distribute the remainder sequentially until all replicas are as-

signed.

• MONITORING_TIME:

– Purpose: Defines the frequency of system monitoring intervals.

– Default: If this variable is not set, it defaults to 30 seconds.

• ACTION_TIME:

– Purpose: Indicates the interval after which the system takes scaling or

adjustment actions based on the collected monitoring data.

– Default: By default, it is set to four times the MONITORING_TIME,

unless otherwise specified.

• TOTAL_REPLICAS:

– Purpose: Indicates the total number of replicas distributed among all

versions of the microservice at startup. The system adjusts this number

dynamically based on workload fluctuations.

– Default: If unspecified, a default value (e.g., 9) is used as the starting

point but may be altered by the system based on workload.

57

• MAX_REPLICAS:

– Purpose: Sets an upper limit on the total replicas that can be provi-

sioned across all pods of the multi-version microservice.

– Default: If not specified, the default value is set to 24.

• MIN_REPLICAS:

– Purpose: Sets a lower limit on the total replicas that the system must

maintain across all pods of the multi-version microservice.

– Default: If not specified, the default value is set to 3.

• MAX_CPU:

– Purpose: Specifies the upper CPU utilization threshold for initiating

scaling actions.

– Default: If not specified, the default value is set to 60%.

• MIN_CPU:

– Purpose: Sets the lower CPU utilization threshold below which the

system considers scaling down.

– Default: If not specified, the default value is set to 20%.

58

• SCALING:

– Purpose: Enables or disables automatic scaling based on the observed

workload.

– Default: If not indicated, the system assumes SCALING=false, which

turns off auto-scaling.

59

Chapter 4

Experimental Evaluation

4.1 Experimental Setup

To evaluate our method, we deployed a cluster including two Virtual Machines

(VMs) within the Compute Canada cloud infrastructure1. We set one VM as a

master node and the other as a worker node in our Kubernetes cluster. The VMs

were set up with the following specifications: The Operating System (OS) used

was Ubuntu 22.04.2 Jammy (x64). This configuration provided 15 GB of RAM,

powered by 4 VCPUs. In terms of storage, the VMs were equipped with a primary

disk storage of 20 GB and an additional ephemeral disk storage of 83 GB.

1https://arbutus.cloud.computecanada.ca

60

https://arbutus.cloud.computecanada.ca

4.2 Subject System

In our experiments, we analyze the Online Boutique application2, a cloud-native

microservices demo application. Online Boutique is composed of 11 microser-

vices, with each service playing a specific role within the application. Table 4.1

provides descriptions of these microservices.

The Online Boutique application simulates an e-commerce website where

users can browse products, add them to their shopping cart, and proceed to check-

out. The architecture of the application is illustrated in Figure 4.1. Furthermore,

visual previews of the application’s home page and checkout page can be found

in Figures 4.2 and 4.3, respectively.

4.2.1 Critical Microservice Identification

Determining which microservices are critical to a system is a significant task.

The failure of a critical microservice can have a profound impact on the overall

system’s functionality. As an application may comprise numerous microservices,

provisioning various versions for all of them can be resource-intensive and costly.

Hence, identifying a select number of critical microservices is vital to minimize

expenses while creating highly reliable applications within budget constraints.

2https://github.com/GoogleCloudPlatform/microservices-demo

61

https://github.com/GoogleCloudPlatform/microservices-demo

Figure 4.1: Online Boutique microservices layout. This visualization showcases
the layout and interconnections of various microservices in the Online Boutique
application. Each microservice plays a distinct role in ensuring the seamless func-
tioning of the entire application.

62

Figure 4.2: Online Boutique application home page.

Figure 4.3: Online Boutique application checkout page.

63

Table 4.1: Description of the Online Boutique application microservices

Microservice Name Image Description

shipping service Gives shipping cost estimates based on the shopping cart. Ships items to the given address
(mock).

checkout service Retrieves user cart, prepares order and orchestrates the payment, shipping, and the email
notification.

product catalog service Provides the list of products from a JSON file and ability to search products and get indi-
vidual products.

redis-cart redis:alpine

load generator Continuously sends requests imitating realistic user shopping flows to the frontend.

recommendation service Recommends other products based on what’s given in the cart.

email service Sends users an order confirmation email (mock).

payment service Charges the given credit card info (mock) with the given amount and returns a transaction
ID.

currency service Converts one money amount to another currency. Uses real values fetched from the Euro-
pean Central Bank.

cart service Stores the items in the user’s shopping cart in Redis and retrieves it.

ad service Provides text ads based on given context words.

frontend Exposes an HTTP server to serve the website. Does not require signup/login; generates
session IDs for all users automatically.

In this work, we have identified the frontend microservice as the most critical,

and have thus applied software multiversioning to it. Past studies [48, 86, 87]

have utilized the PageRank algorithm to assess the importance of microservices

within a system. While an in-depth exploration of this methodology falls outside

the purview of our current research, interested readers are encouraged to refer to

these cited works for further insight. Our designation of the frontend service as

the critical microservice is predicated on the following considerations:

• Initial User Interaction: The frontend service represents the initial inter-

64

face for users. The entire user experience is disrupted if it fails, regardless

of whether other services function perfectly.

• Aggregator of Services: The frontend often acts as aggregators, pulling

data from various services to present to the user. Its failure can render these

services effectively inaccessible.

As outlined in Section 3.1, our system consists of two pivotal microservices:

Load Balancer and Scaling Engine. These are instrumental to the operation of the

Online Boutique application, which we use as a case study. Table 4.2 provides a

detailed description of the microservices in our system.

4.3 Scaling Engine Configuration

Within our system, a component for our scaling engine named ‘ReplicaBalancer’

is created using the command described in Listing 3.1. Following its instantia-

tion, we configure the environment variable DEPLOYMENT_IMAGES_REPLICAS as

shown in the command outlined in Listing 4.1. Upon configuring the environment

variable, it is crucial to verify that all Pods have successfully transitioned to a

‘running’ state. This verification serves as a prerequisite before commencing the

experimental procedures. Once all Pods are confirmed to be running, we proceed

65

with initiating the experiment.

Listing 4.1: Setting environmental variables

kubectl set env deployment/ test \

DEPLOYMENT_IMAGES_REPLICAS = \

"gcr . io /google−samples/ microservices −demo/frontend:v0 .8.0, \

gcr . io /google−samples/ microservices −demo/frontend:v0 .8.0, \

gcr . io /google−samples/ microservices −demo/frontend:v0.8.0"

4.4 Workload

For the load generation, we used Locust running a specific set of workloads. In

this workload, there is a predefined list for products. A user can browse random

products, set currency preferences from four choices (EUR, USD, JPY, CAD),

view their cart, add products to the cart, and proceed to checkout. These tasks

simulate typical online shopping patterns. When checking out, the user is assumed

to add a random product to their cart and provide fixed checkout details. The

user’s behaviour is defined in a task set with weighted probabilities for each task,

ensuring that browsing products is the most frequent action. Each simulated user

will begin their session by visiting the homepage and then proceed with actions

66

Table 4.2: Comprehensive list of microservices used in the study, with bold indi-
cating custom-developed services pivotal to the research’s innovative approach.

Microservice Name Image Name Description

shipping service shippingservice:v0.8.0 Standard Online Boutique microservice

checkout service checkoutservice:v0.8.0 Standard Online Boutique microservice

product catalog service productcatalogservice:v0.8.0 Standard Online Boutique microservice

redis-cart redis:alpine Standard online boutique microservice

load generator nazaninakhtarian/locust-loadtest:latest Our deployed microservice

recommendation service recommendationservice:v0.8.0 standard Online Boutique microservice

email service emailservice:v0.8.0 Standard Online Boutique microservice

payment service paymentservice:v0.8.0 Standard Online Boutique microservice

currency service currencyservice:v0.8.0 Standard Online Boutique microservice

cart service cartservice:v0.8.0 Standard Online Boutique microservice

ad service adservice:v0.8.0 Standard Online Boutique microservice

frontend-memory-leak-deployment frontend:v0.8.0 Standard Online Boutique microservice

frontend-inconsistent-response-deployment frontend:v0.8.0 Standard Online Boutique microservice

frontend-faulty-deployment frontend:v0.8.0 Standard Online Boutique microservice

scaling engine nazaninakhtarian/rsapp:testing Our deployed microservice

nginx-deployment nginx:latest Standard NGINX microservice

prometheus-grafana quay.io/kiwigrid/k8s-sidecar:1.25.1 Dashboard interface for Grafana

chaos-dashboard ghcr.io/chaos-mesh/chaos-coredns:v0.2.6 Dashboard interface for Chaos Mesh

67

based on the weighted tasks. In the original configuration of the online boutique

load generator, users pause between tasks for an interval ranging from 1 to 10

seconds. In our study, we adapted this behaviour to a shorter, more dynamic

range of 100 to 1000 milliseconds. This alteration was made with the intent of

placing a more concentrated load on the frontend microservice, allowing us to

better observe and understand the system’s overall response and behaviour under

such conditions.

4.5 Chaos Mesh

Chaos Mesh3 is an open-source Chaos Engineering platform designed to orches-

trate chaos within Kubernetes environments. Chaos Engineering is a practice fo-

cused on identifying vulnerabilities in systems by deliberately introducing failures

and observing the system’s reaction. Chaos Mesh also offers a user-friendly UI,

enabling the creation, management, and monitoring of chaos experiments. The

platform supports a range of chaos experiments to test various aspects of Kuber-

netes deployments, including:

1. Network Chaos: Simulates network delays, packet loss, and other network

3https://chaos-mesh.org

68

https://chaos-mesh.org

issues between Pods to evaluate application behaviour under adverse net-

work conditions.

2. Kernel Chaos: Triggers kernel panics, hangs, and faults in system calls,

providing insights into application resilience at the operating system level.

3. Pod Chaos: Allows for the killing, restarting, or pausing of specific Pods,

enabling the simulation of failure scenarios involving Pod disruptions.

4. HTTP Chaos: Alters HTTP requests and responses, including status codes,

headers, and body content, to assess the impact on Pod communication.

5. DNS Chaos: Introduces DNS errors or alters DNS resolution to examine

application responses to DNS issues.

6. Stress Chaos: Applies stress to CPU and memory resources within contain-

ers, helping identify memory leaks and system behaviour under resource

strain.

7. Workflow Chaos: Facilitates the creation of complex chaos scenarios by

arranging experiments in sequences or in parallel.

8. Time Chaos: Simulates time offsets to challenge synchronization and timing-

dependent functionalities.

69

9. IO Chaos: Emulates file system faults, aiding in understanding system re-

sponses to I/O errors.

For our experiments, we employed Pod Chaos, HTTP Chaos, and Stress Chaos

to investigate the resilience of our system. The subsequent section will delve into

the specifics of integrating these chaos types into our experiments.

4.6 Chaos Injection

In this project, we introduced chaos into three distinct versions of the frontend mi-

croservice, each labeled as ‘Faulty,’ ‘Inconsistent Response,’ and ‘Memory Leak’.

These labels clearly indicate the type of chaos associated with each version:

1. Faulty Version: This version experiences crashes resulting in Pod restarts

due to a deliberate bug.

2. Inconsistent Response Version: This version displays unpredictable re-

sponse times.

3. Memory Leak Version: This version is affected by a memory leak, testing

the system’s handling of memory-related issues.

70

4.6.1 Chaos Types

As previously mentioned, we introduce three types of chaos into our system:

• Pod Chaos: Implemented to trigger every 3 minutes, this chaos specifically

affects the ‘frontend-faulty-deployment’ application, causing all associated

Pods to terminate for 30 seconds. This simulates the effect of sudden Pod

crashes.

• HTTP Chaos: Scheduled to activate every 4 minutes on the ‘frontend-

inconsistent-response-deployment’ application, this chaos introduces a 2-

second delay to all HTTP responses, lasting for 2 minutes, to mimic network

latency.

• Stress Chaos: This is applied to the ‘frontend-memory-leak-deployment’

application at 4-minute intervals, simulating a memory leak by rapidly con-

suming memory resources. Two worker processes each use 20 MB of mem-

ory without release, replicating a memory leak scenario for 2 minutes.

71

4.7 Monitoring Metrics with Prometheus

We leveraged the Prometheus Query Language (PromQL) for querying metrics.

Prometheus4 is an open-source system for monitoring and alerting, renowned for

its robustness and scalability. For targeted insights, we tailored the ‘Pod‘ regex

within each query to correspond to the specific frontend deployment under test,

allowing us to isolate and monitor the effects of chaos on each version. Below we

present the PromQL queries utilized in our study:

Listing 4.2: Query to get the total restart count for the ’frontend-faulty’ deployment.

sum(kube_pod_container_status_restarts_total{namespace="default",

pod=~"frontend-faulty.*"} * on(pod) group_left

kube_pod_status_phase{namespace="default", phase="Running"})

Listing 4.3: Query to get the average memory usage (MB) of ’frontend-faulty’ Pods.

sum(container_memory_usage_bytes{namespace=’default’,

pod=~’frontend-faulty.*’} * on (pod, namespace)

group_left(phase) kube_pod_status_phase{phase=’Running’}) /

count(kube_pod_status_phase{namespace=’default’,

pod=~’frontend-faulty.*’, phase=’Running’}) / 1024 / 1024)

4https://prometheus.io/

72

https://prometheus.io/

4.8 Experimental Discussion

To comprehend the system’s behaviour in depth, we conducted two experiments.

The first aimed to observe the change in replica distribution based on the relia-

bility of individual components. By selectively introducing chaos, we gauged the

direct influence of reliability metrics on replica count. The second experiment fo-

cused on the system’s response to varying workloads, particularly its adaptability

in replica scaling with changes in CPU utilization.

4.8.1 Experiment 1: Evolution under Constant Workload

Our first experiment investigated the system’s behaviour under constant workload

conditions. We conducted tests for 2 hours with 20 concurrent users. For clarity

and to observe the direct influence of each metric on reliability, we first injected

only one type of chaos into each software version. In this way, we isolated the

effects of each chaos type, making it easier to understand the specific impact of

each metric on the system’s overall reliability. After that, we injected all three

types of chaos into the system and observed its behaviour again.

Initially, we allowed the system to run undisturbed to observe the replica dis-

tribution across different versions. As shown in Figure 4.6, each version started

73

with 5 replicas, given a total of 15 replicas distributed equally. This uniform dis-

tribution can be attributed to the identical reliability scores of the versions, as no

chaos had been introduced at this point.

Subsequently, we introduced Pod chaos, detailed in Section 4.6. Following

this, a noticeable restart increase for the frontend-faulty-deployment was evident,

as depicted in Figure 4.4. Additionally, as seen in Figure 4.5, memory usage pat-

terns for this version fluctuated. Simultaneously, Figure 4.6 captures the system’s

adaptive response in terms of replica distribution. The faulty deployment’s replica

count was adjusted to 3. This change underscores the system’s recognition of the

diminished reliability of the faulty deployment due to the Pod chaos, which was

an expected outcome. It’s crucial to note that, at this juncture, only the Pod chaos

was in play.

Stopping the chaos which replicating a scenario where a developer fixes a bug,

the system gradually returned to an even distribution of 5 replicas per version.

Next, we applied HTTP chaos targeting the frontend-inconsistent-response-

deployment. This resulted in noticeable system latency, as captured in Figure

4.7. Interestingly, a replica was reallocated from frontend-inconsistent-response

to frontend-faulty-deployment. Upon halting this chaos, the system returned to its

balanced state of 5 replicas for each version.

74

Figure 4.4: Restart count of frontend microservice versions. This chart illustrates
the frequency and patterns of system restarts over a specific period.

Figure 4.5: Memory usage over time (measured in MB). This graph provides a
comprehensive look at the memory consumption patterns for different frontend
deployments.

75

Figure 4.6: Replica and reliability over time. The bar chart illustrates the num-
ber of replicas for different frontend microservice versions over time. Adjacent
vertical lines, differentiated by line style, represent the reliability scores for each
version.

Figure 4.7: Application’s response time during the first experiment.

76

Figure 4.8: Request statistics overview. This chart presents a detailed break-
down of request metrics, including successful requests, failures, and other per-
tinent statistics over a specified period.

Figure 4.9: Locust request analysis. This chart showcases the load test results
using Locust, detailing request success rates and failures.

77

Figure 4.10: Number of users. This chart presents the number of active users
accessing the system over a specific duration for the first experiment.

In a subsequent test, we introduced stress chaos to the frontend-memory-leak-

deployment. The Grafana5 dashboard, as seen in Figure 4.5, captured a rise in

memory consumption. The result on replica distribution is illustrated in Figure

4.6, which involves the subtraction of a replica from frontend-memory-leak and its

addition to frontend-inconsistent-response. Following 10 minutes after stopping

this chaos, the system restored its equilibrium of 5 replicas per version.

In our final testing phase, we combined all three chaos types to understand

their compounded effect. The replica distribution settled at 3, 6, and 6, influenced

by the metric weights detailed in Section 3.2.2. After stopping all chaos injections,

the system eventually returned to its initial balanced state.

Figure 4.8 shows the request statistics of our workload. Figure 4.9 shows

the sent request pattern to the system by the load generator microservice. Lastly,

5https://grafana.com

78

https://grafana.com

Figure 4.10, shows the number of users that was 20 in the whole experiment.

4.8.2 Experiment 2: Dynamic Scaling based on Workload

Our second experiment was designed to understand the system’s dynamic scaling

capabilities in relation to variable workloads, primarily focusing on CPU utiliza-

tion as an indicator.

As the system was subjected to different user loads (Figure 4.11), we closely

monitored the frontend microservice pods’ CPU usage as illustrated in Figure

4.13. Over time, as we changed the number of users, a direct correlation was ob-

served between the workload and CPU usage. As the workload intensified, there

was a consequent increase in CPU usage. In line with the user-configurable thresh-

olds discussed in Section 3.5, our configuration set an upper CPU limit at 60% and

a lower limit at 20%. Should the CPU usage exceed 60%, the system would trig-

ger an upscale in the number of pod replicas. Initially, with a total of 9 replicas

and CPU usage below 20%, the system demonstrated its efficiency by reducing

the replica count, as evident in the initial segment of the Figure 4.14. However, as

the experiment progressed and the number of users increased, a notable increase

in the total number of replicas was recorded, demonstrating the system’s ability in

dynamic scaling to meet the demands of a fluctuating workload.

79

Figure 4.11: Number of users. This chart presents the number of active users
accessing the system over a specific duration for the second experiment.

Figure 4.12: Application’s response time during the second experiment.

Figure 4.13: Average CPU utilization of frontend microservice Pods over time.

80

Figure 4.14: Dynamic scaling of frontend microservice Pods. This chart visual-
izes the system’s dynamic scaling capabilities in response to varying workloads,
highlighting the changes in the number of replicas over time. The system’s adapt-
ability to workload fluctuations is evident from the shifts in replica counts.

81

Chapter 5

Discussions and Future Works

5.1 Threats to Validity

In this section, we discuss the potential threats to the validity of our experiment

involving Chaos Mesh to test the reliability and robustness of our subject system.

5.1.1 External Validity

Choice of Subject System: Our experiments were conducted on the Online Bou-

tique application within a specific system configuration. Future research should

explore the generalizability of our findings across diverse setups and varying clus-

ter sizes.

82

Chaos Types Selection: The chaos experiments were limited to certain types

provided by Chaos Mesh. Real-world systems may encounter a broader and more

complex range of disruptions not encompassed by our study.

5.1.2 Internal Validity

Chaos Injection Timing: The frequency of chaos injections in our tests may

not mirror actual operational conditions, where failures could be more erratic or

frequent.

Replica Distribution: We initiated our experiments with uniform replica dis-

tribution across software versions, which may not accurately reflect the varied

distributions present in live environments.

5.1.3 Construct Validity

Metric Selection: We chose specific metrics to represent system reliability. While

informative, these metrics may not translate universally to all systems, which

could have different reliability benchmarks or operational criteria.

Metric Weighting: The weights given to each metric in Section 3.2.2 are context-

dependent. In different scenarios, the prioritization of these metrics could vary

significantly.

83

5.2 Future Work

Extension to More Microservices: Given the scale and complexity of software

systems, future work could expand to include a wider range of microservices.

Refinement of Metrics and Validation: While the current study relies on specific

metrics like restart count, response time, and memory usage, there’s room to in-

vestigate other metrics that might offer more comprehensive insights. This might

also include a validation process for metrics selection across varied systems.

Analysis of Real-world Traffic Patterns: Incorporating actual user traffic pat-

terns could provide a more accurate assessment of system behaviour under typical

operational conditions.

Advanced Chaos Experimentation: Enriching chaos testing scenarios with more

diverse real-world failures could enhance the thoroughness of system evaluations.

Dynamic Scaling Techniques: There is an opportunity to improve upon the

threshold-based scaling approach by integrating predictive models that enable an-

ticipatory scaling actions.

Multi-modal Metric Integration: Future work could also include a mix of per-

formance metrics, such as network bandwidth, disk I/O, and tailored application

metrics for a comprehensive performance and scalability analysis.

84

Chapter 6

Conclusions

In the realm of software engineering, multi-versioning has predominantly been

employed to enhance system robustness, especially for critical applications. How-

ever, due to the substantial costs associated with implementing multiple versions

of an application, its use has often been restricted to the application’s critical com-

ponents and microservices architecture presents a straightforward way to leverage

software multi-versioning. In this work, we dynamically adjusted the replica

count for each software version in response to the system’s real-time reliabil-

ity metrics. By leveraging Chaos Mesh, we simulated a series of disruptions

and gained insights into how different metrics influence overall system reliabil-

ity. With the rectification of bugs and the improvement of versions, we noted an

85

increase in their respective population. By the end of the experiment, we antici-

pated a similar number of replicas for each version if all of them were bug-free

and efficient, as was illustrated in Figure 4.6. Our results contribute to ongoing re-

search and highlight the potential of dynamic adaptation as an instrumental tactic

for developing reliable software systems in the future.

86

Bibliography

[1] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architecture
enables devops: migration to a cloud-native architecture,” IEEE Software,
vol. 33, pp. 42–52, 2016.

[2] H. Fernandez, G. Pierre, and T. Kielmann, “Autoscaling web applications
in heterogeneous cloud infrastructures,” in 2014 IEEE International Confer-
ence on Cloud Engineering, 2014, pp. 195–204.

[3] N. C. Coulson, S. Sotiriadis, and N. Bessis, “Adaptive microservice scaling
for elastic applications,” IEEE Internet of Things Journal, vol. 7, no. 5, pp.
4195–4202, 2020.

[4] D.-D. Vu, M.-N. Tran, and Y. Kim, “Predictive hybrid autoscaling for con-
tainerized applications,” IEEE Access, vol. 10, pp. 109 768–109 778, 2022.

[5] N.-M. Dang-Quang and M. Yoo, “Deep learning-based autoscaling using
bidirectional long short-term memory for kubernetes,” Applied Sciences,
vol. 11, no. 9, p. 3835, 2021.

[6] S. Taherizadeh, V. Stankovski, and J.-H. Cho, “Dynamic multi-level auto-
scaling rules for containerized applications,” The Computer Journal, vol. 62,
no. 2, pp. 174–197, 2019.

[7] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic vertical
elasticity of docker containers with elasticdocker,” in 2017 IEEE 10th Inter-
national Conference on Cloud Computing (CLOUD), 2017, pp. 472–479.

[8] “Horizontal pod autoscaler,” https://kubernetes.io/docs/tasks/
run-application/horizontal-pod-autoscale, accessed: 2020-08-01.

87

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale

[9] I. Prachitmutita, W. Aittinonmongkol, N. Pojjanasuksakul, M. Supattatham,
and P. Padungweang, “Auto-scaling microservices on iaas under sla with
cost-effective framework,” in 2018 Tenth International Conference on Ad-
vanced Computational Intelligence (ICACI), 2018, pp. 583–588.

[10] M. Imdoukh, I. Ahmad, and M. G. Alfailakawi, “Machine learning-based
auto-scaling for containerized applications,” Neural Computing and Appli-
cations, vol. 32, pp. 9745–9760, 2020.

[11] X. Tang, Q. Liu, Y. Dong, J. Han, and Z. Zhang, “Fisher: An efficient
container load prediction model with deep neural network in clouds,” in
2018 IEEE Intl Conf on Parallel & Distributed Processing with Applica-
tions, Ubiquitous Computing & Communications, Big Data & Cloud Com-
puting, Social Computing & Networking, Sustainable Computing & Com-
munications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). IEEE, 2018,
pp. 199–206.

[12] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena, “Intelligent work-
load factoring for a hybrid cloud computing model,” in 2009 Congress on
Services - I, 2009, pp. 701–708.

[13] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload predic-
tion using arima model and its impact on cloud applications’ qos,” IEEE
transactions on cloud computing, vol. 3, no. 4, pp. 449–458, 2014.

[14] W. Fang, Z. Lu, J. Wu, and Z. Cao, “Rpps: A novel resource prediction and
provisioning scheme in cloud data center,” in 2012 IEEE Ninth International
Conference on Services Computing. IEEE, 2012, pp. 609–616.

[15] H. T. Ciptaningtyas, B. J. Santoso, and M. F. Razi, “Resource elasticity
controller for docker-based web applications,” in 2017 11th International
Conference on Information Communication Technology and System (ICTS),
2017, pp. 193–196.

[16] V. Messias, J. Estrella, R. Ehlers, M. Santana, R. Santana, and S. Reiff-
Marganiec, “Combining time series prediction models using genetic algo-
rithm to autoscaling web applications hosted in the cloud infrastructure,”
Neural Computing and Applications, vol. 27, 11 2016.

88

[17] M. Elgili, “Load balancing algorithms round-robin (rr), least-connection
and least loaded algorithm,” ResearchGate, 2020. [Online]. Available:
https://www.researchgate.net/publication/link_to_paper

[18] T. W. Harjanti, H. Setiyani, and J. Trianto, “Load balancing analysis us-
ing round-robin and least-connection algorithms for server service response
time,” Applied Technology and Computing Science Journal, vol. 5, no. 2, pp.
40–49, 2022.

[19] R. L. Keeney and H. Raiffa, Decisions with multiple objectives: preferences
and value trade-offs. Cambridge university press, 1993.

[20] S. Rasmussen, Utility Function. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 5–17. [Online]. Available: https://doi.org/10.1007/
978-3-642-21686-2_3

[21] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated soft-
ware diversity,” in 2014 IEEE Symposium on Security and Privacy, 2014,
pp. 276–291.

[22] M. Franz, “E unibus pluram: Massive-scale software diversity as a
defense mechanism,” in Proceedings of the 2010 New Security Paradigms
Workshop, ser. NSPW ’10. New York, NY, USA: Association for
Computing Machinery, 2010, p. 7–16. [Online]. Available: https:
//doi.org/10.1145/1900546.1900550

[23] B. Persaud, B. Obada, N. Mansourzadeh, A. Moni, and A. Somayaji,
“Frankenssl: Recombining cryptographic libraries for software diversity,”
06 2016.

[24] C. Çiğşar and Y. Lim, “Modeling and analysis of cluster of failures in redun-
dant systems,” in 2017 2nd International Conference on System Reliability
and Safety (ICSRS), 2017, pp. 119–124.

[25] E. Gracic, A. Hayek, and J. Börcsök, “Evaluation of fpga design tools for
safety systems with on-chip redundancy referring to the standard iec 61508,”
in 2017 2nd International Conference on System Reliability and Safety (IC-
SRS), 2017, pp. 386–390.

89

https://www.researchgate.net/publication/link_to_paper
https://doi.org/10.1007/978-3-642-21686-2_3
https://doi.org/10.1007/978-3-642-21686-2_3
https://doi.org/10.1145/1900546.1900550
https://doi.org/10.1145/1900546.1900550

[26] A. Gorbenko, V. Kharchenko, and A. Romanovsky, Using Inherent Service
Redundancy and Diversity to Ensure Web Services Dependability, 03 2009,
vol. 5454, pp. 324–341.

[27] H. Borck, M. Boddy, I. J. De Silva, S. Harp, K. Hoyme, S. Johnston,
A. Schwerdfeger, and M. Southern, “Frankencode: Creating diverse pro-
grams using code clones,” in 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), vol. 1, 2016, pp.
604–608.

[28] L. Wang, “Architecture-based reliability-sensitive criticality measure for
fault-tolerance cloud applications,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 30, no. 11, pp. 2408–2421, 2019.

[29] Z. Zheng, M. Lyu, and H. Wang, “Service fault tolerance for highly re-
liable service-oriented systems: an overview,” Science China Information
Sciences, vol. 58, pp. 1–12, 05 2015.

[30] Z. Zheng and M. R. Lyu, “Selecting an optimal fault tolerance strategy for
reliable service-oriented systems with local and global constraints,” IEEE
Transactions on Computers, vol. 64, no. 1, pp. 219–232, 2015.

[31] S. Gholami, A. Goli, C.-P. Bezemer, and H. Khazaei, “A framework for
satisfying the performance requirements of containerized software systems
through multi-versioning,” in Proceedings of the ACM/SPEC International
Conference on Performance Engineering, ser. ICPE ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 150–160. [Online].
Available: https://doi.org/10.1145/3358960.3379125

[32] H. Mohamed and O. F. El-Gayar, “End-to-end latency prediction of mi-
croservices workflow on kubernetes: a comparative evaluation of machine
learning models and resource metrics,” Proceedings of the Annual Hawaii
International Conference on System Sciences, 2021.

[33] V. H. S. C. Pinto, R. R. Oliveira, R. F. Vilela, and S. R. Souza, “Evaluating
the user acceptance testing for multi-tenant cloud applications.” in CLOSER,
2018, pp. 47–56.

[34] T. D. Timur, I. K. E. Purnama, and S. M. S. Nugroho, “Deploying scalable
face recognition pipeline using distributed microservices,” in 2019 Interna-

90

https://doi.org/10.1145/3358960.3379125

tional Conference on Computer Engineering, Network, and Intelligent Mul-
timedia (CENIM), 2019, pp. 1–5.

[35] W. Lu, Q. Xu, C. Lan, L. Lyu, Y. Zhou, Q. Shi, Y. Zhao et al., “Microservice-
based platform for space situational awareness data analytics,” International
Journal of Aerospace Engineering, vol. 2020, 2020.

[36] S. P. R. Asaithambi, R. Venkatraman, and S. Venkatraman, “Mobda:
Microservice-oriented big data architecture for smart city transport
systems,” Big Data and Cognitive Computing, vol. 4, no. 3, 2020. [Online].
Available: https://www.mdpi.com/2504-2289/4/3/17

[37] S. Ali, M. A. Jarwar, and I. Chong, “Design methodology of microservices
to support predictive analytics for iot applications,” Sensors, vol. 18, no. 12,
p. 4226, 2018.

[38] M. Abdel-Basset, H. Hawash, and K. Sallam, “Federated threat-hunting
approach for microservice-based industrial cyber-physical system,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 3, pp. 1905–1917, 2022.

[39] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar,
“Toniottelemetrydataset : Anewgenerationdataseto f iotandiiot f ordata −
drivenintrusiondetectionsystems,′′ IEEE Access,vol. 8, pp.165130 −
−165150,2020.

[40] R. Damaševičius, A. Venčkauskas, S. Grigaliunas, J. Toldinas, N. Morkevicius,
T. Aleliūnas, and P. Smuikys, “Litnet-2020: An annotated real-world network
flow dataset for network intrusion detection,” Electronics, vol. 9, p. 800, 05 2020.

[41] S. Trilles, A. González-Pérez, and J. Huerta, “An iot platform based on microser-
vices and serverless paradigms for smart farming purposes,” Sensors, vol. 20,
no. 8, p. 2418, 2020.

[42] R. Xu, G. S. Ramachandran, Y. Chen, and B. Krishnamachari, “Blendsm-ddm:
blockchain-enabled secure microservices for decentralized data marketplaces,”
2019 IEEE International Smart Cities Conference (ISC2), 2019.

[43] V. De Maio and D. Kimovski, “Multi-objective scheduling of extreme data
scientific workflows in fog,” Future Generation Computer Systems, vol. 106,
pp. 171–184, 2020. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167739X19309197

91

https://www.mdpi.com/2504-2289/4/3/17
https://www.sciencedirect.com/science/article/pii/S0167739X19309197
https://www.sciencedirect.com/science/article/pii/S0167739X19309197

[44] C. Li, M. Song, M. Zhang, and Y. Luo, “Effective replica management for improv-
ing reliability and availability in edge-cloud computing environment,” Journal of
Parallel and Distributed Computing, vol. 143, pp. 107–128, 2020.

[45] R. Florin, A. Ghazizadeh, P. Ghazizadeh, S. Olariu, and D. C. Marinescu, “En-
hancing reliability and availability through redundancy in vehicular clouds,” IEEE
Transactions on Cloud Computing, vol. 9, no. 3, pp. 1061–1074, 2019.

[46] H. Chen, X. Zhu, G. Liu, and W. Pedrycz, “Uncertainty-aware online schedul-
ing for real-time workflows in cloud service environment,” IEEE Transactions on
Services Computing, vol. 14, no. 4, pp. 1167–1178, 2018.

[47] N. Kherraf, S. Sharafeddine, C. M. Assi, and A. Ghrayeb, “Latency and reliability-
aware workload assignment in iot networks with mobile edge clouds,” IEEE
Transactions on Network and Service Management, vol. 16, no. 4, pp. 1435–1449,
2019.

[48] Z. Liu, G. Fan, H. Yu, and L. Chen, “An approach to modeling and analyzing re-
liability for microservice-oriented cloud applications,” Wireless Communications
and Mobile Computing, vol. 2021, pp. 1–17, 08 2021.

[49] ——, “Modelling and analysing the reliability for microservice-based cloud
application based on predicate petri net,” Expert Systems, vol. 39, no. 6, p.
e12924, 2022. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1111/exsy.12924

[50] W. Ha, “Reliability prediction for web service composition,” in 2017 13th Inter-
national Conference on Computational Intelligence and Security (CIS). IEEE,
2017, pp. 570–573.

[51] Z. Zang, Q. Wen, and K. Xu, “A fault tree based microservice reliability evaluation
model,” in IOP Conference Series: Materials Science and Engineering, vol. 569,
no. 3. IOP Publishing, 2019, p. 032069.

[52] H. Gao, C. Liu, Y. Li, and X. Yang, “V2vr: reliable hybrid-network-oriented
v2v data transmission and routing considering rsus and connectivity probability,”
IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 6, pp. 3533–
3546, 2020.

92

https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.12924
https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.12924

[53] A. Sharif, M. Nickray, and A. Shahidinejad, “Energy-efficient fault-tolerant
scheduling in a fog-based smart monitoring application,” International Journal
of Ad Hoc and Ubiquitous Computing, vol. 36, no. 1, pp. 32–49, 2021.

[54] J. Yao, Q. Lu, H.-A. Jacobsen, and H. Guan, “Robust multi-resource allocation
with demand uncertainties in cloud scheduler,” in 2017 IEEE 36th Symposium on
Reliable Distributed Systems (SRDS). IEEE, 2017, pp. 34–43.

[55] B. K. Ray, A. Saha, S. Khatua, and S. Roy, “Proactive fault-tolerance technique
to enhance reliability of cloud service in cloud federation environment,” IEEE
Transactions on Cloud Computing, vol. 10, no. 2, pp. 957–971, 2020.

[56] G. Fan, L. Chen, H. Yu, and D. Liu, “Modeling and analyzing dynamic fault-
tolerant strategy for deadline constrained task scheduling in cloud computing,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 4,
pp. 1260–1274, 2017.

[57] T. Shi, H. Ma, and G. Chen, “A genetic-based approach to location-aware cloud
service brokering in multi-cloud environment,” in 2019 IEEE International Con-
ference on Services Computing (SCC). IEEE, 2019, pp. 146–153.

[58] L. Wang, Q. He, D. Gao, J. Wan, and Y. Zhang, “Temporal-perturbation aware
reliability sensitivity measurement for adaptive cloud service selection,” IEEE
Transactions on Services Computing, vol. 15, no. 4, pp. 2301–2313, 2020.

[59] R. Pietrantuono, S. Russo, and A. Guerriero, “Run-time reliability estimation of
microservice architectures,” in 2018 IEEE 29th International Symposium on Soft-
ware Reliability Engineering (ISSRE), 2018, pp. 25–35.

[60] W. Hasselbring and G. Steinacker, “Microservice architectures for scalability,
agility and reliability in e-commerce,” in 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), 2017, pp. 243–246.

[61] T. Wang, W. Zhang, J. Xu, and Z. Gu, “Workflow-aware automatic fault diag-
nosis for microservice-based applications with statistics,” IEEE Transactions on
Network and Service Management, vol. 17, no. 4, pp. 2350–2363, 2020.

[62] W. Yang, L. CHENG, and S. Xin, “Design and research of microservice applica-
tion automation testing framework,” in 2019 International Conference on Infor-
mation Technology and Computer Application (ITCA). IEEE, 2019, pp. 257–260.

93

[63] M. Camilli, A. Guerriero, A. Janes, B. Russo, and S. Russo, “Microservices
integrated performance and reliability testing,” in Proceedings of the 3rd
ACM/IEEE International Conference on Automation of Software Test, ser. AST
’22. New York, NY, USA: Association for Computing Machinery, 2022, p.
29–39. [Online]. Available: https://doi.org/10.1145/3524481.3527233

[64] J. Yao and N. Ansari, “Fog resource provisioning in reliability-aware iot net-
works,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8262–8269, 2019.

[65] R. K. Behera, K. H. K. Reddy, and D. S. Roy, “Reliability modelling of service
oriented internet of things,” in 2015 4th International Conference on Reliability,
Infocom Technologies and Optimization (ICRITO)(Trends and Future Directions).
IEEE, 2015, pp. 1–6.

[66] S. Sinche, O. Polo, D. Raposo, M. Femandes, F. Boavida, A. Rodrigues,
V. Pereira, and J. S. Silva, “Assessing redundancy models for iot reliability,” in
2018 IEEE 19th International Symposium on" A World of Wireless, Mobile and
Multimedia Networks"(WoWMoM). IEEE, 2018, pp. 14–15.

[67] L. Li, Z. Jin, G. Li, L. Zheng, and Q. Wei, “Modeling and analyzing the reliability
and cost of service composition in the iot: A probabilistic approach,” in 2012
IEEE 19th International Conference on Web Services. IEEE, 2012, pp. 584–
591.

[68] D. Ursino and L. Virgili, “Humanizing iot: Defining the profile and the reliability
of a thing in a multi-iot scenario,” Toward Social Internet of Things (SIoT): En-
abling Technologies, Architectures and Applications: Emerging Technologies for
Connected and Smart Social Objects, pp. 51–76, 2020.

[69] I. Eroshkin, L. Vojtech, and M. Neruda, “Resource efficient real-time reliability
model for multi-agent iot systems,” IEEE Access, vol. 10, pp. 2578–2590, 2022.

[70] G. Araújo, A. Sabino, L. Lima, V. Costa, C. Brito, P. Rego, I. Fé, and F. A.
Silva, “Energy consumption in microservices architectures: a systematic literature
review,” 2023.

[71] X. Chen and S. Xiao, “Multi-objective and parallel particle swarm optimization
algorithm for container-based microservice scheduling,” Sensors, vol. 21, p. 6212,
2021.

94

https://doi.org/10.1145/3524481.3527233

[72] Z. Liu, H. Yu, G. Fan, and L. Chen, “Reliability modelling and optimization for
microservice-based cloud application using multi-agent system,” IET Communi-
cations, vol. 16, pp. 1182–1199, 2022.

[73] “Two month’s worth of all http requests to the nasa kennedy space center,”
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html, available online; accessed on
DATE.

[74] R. Hyndman and Y. Khandakar, “Automatic time series forecasting: The forecast
package for r,” Journal of Statistical Software, vol. 27, no. 3, pp. 1–22, 2008.

[75] M. Borkowski, S. Schulte, and C. Hochreiner, “Predicting cloud resource utiliza-
tion,” in Proceedings of the 2016 IEEE/ACM 9th International Conference on
Utility and Cloud Computing (UCC). Shanghai, China: IEEE/ACM, dec 2016,
pp. 37–42.

[76] “1998 worldcup website access logs,” http://ita.ee.lbl.gov/html/contrib/
WorldCup.html, accessed: *insert date here*.

[77] M. Yan, X. Liang, Z. Lu, J. Wu, and W. Zhang, “Hansel: Adaptive horizontal scal-
ing of microservices using bi-lstm,” Applied Soft Computing, vol. 105, p. 107216,
2021.

[78] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, “Adaptive ai-based auto-scaling
for kubernetes,” in Proceedings of the 2020 20th IEEE/ACM International Sym-
posium on Cluster, Cloud and Internet Computing (CCGRID). Melbourne, Aus-
tralia: IEEE/ACM, may 2020, pp. 599–608.

[79] J. Dogani, F. Khunjush, and M. Seydali, “K-agrued: A container autoscaling tech-
nique for cloud-based web applications in kubernetes using attention-based gru
encoder-decoder,” Journal of Grid Computing, vol. 20, p. 40, 2022.

[80] N.-M. Dang-Quang and M. Yoo, “Multivariate deep learning model for workload
prediction in cloud computing,” in 2021 International Conference on Information
and Communication Technology Convergence (ICTC). IEEE, 2021, pp. 858–862.

[81] ——, “A study on deep learning-based multivariate resource estimation with fea-
ture selection in cloud computing,” , pp. 366–369, 2021.

[82] D. Balla, C. Simon, and M. Maliosz, “Adaptive scaling of kubernetes pods,” in
NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium,
2020, pp. 1–5.

95

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html

[83] L. Ju, P. Singh, and S. Toor, “Proactive autoscaling for edge computing systems
with kubernetes,” in Proceedings of the 14th IEEE/ACM International Conference
on Utility and Cloud Computing Companion, 2021, pp. 1–8.

[84] M. Tahir, Q. M. Ashraf, and M. Dabbagh, “Towards enabling autonomic com-
puting in iot ecosystem,” in 2019 IEEE Intl Conf on Dependable, Autonomic and
Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf
on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech). IEEE, 2019, pp. 646–651.

[85] M. Różańska and G. Horn, “Marginal metric utility for autonomic cloud
application management,” in Proceedings of the 14th IEEE/ACM International
Conference on Utility and Cloud Computing Companion, ser. UCC ’21.
New York, NY, USA: Association for Computing Machinery, 2022. [Online].
Available: https://doi.org/10.1145/3492323.3495587

[86] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S. Kusumoto, “Ranking
significance of software components based on use relations,” IEEE Transactions
on Software Engineering, vol. 31, no. 3, pp. 213–225, 2005.

[87] T. Shi, H. Ma, G. Chen, and S. Hartmann, “Location-aware and budget-
constrained application replication and deployment in multi-cloud environment,”
in 2020 IEEE International Conference on Web Services (ICWS). IEEE, 2020,
pp. 110–117.

96

https://doi.org/10.1145/3492323.3495587

	Abstract
	Preface
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Software Multi-Versioning
	Microservices
	Auto-Scaling
	Load Balancing
	Utility Function
	Objectives and Contributions
	Thesis Outline

	Related Work
	Software Multi-Versioning
	Software Multi-Versioning for Containerized Applications
	Microservices in Action
	Reliability for Microservices
	Auto-Scaling Approaches

	Methodology
	System Architecture
	The Scaling Engine
	Automated Load Balancer Configuration Updater
	Reliability Scoring System
	Replica Adjustment
	Adaptive Scaling for Dynamic Workloads

	Diversity Factor: Quantifying Version Variation
	Definition
	Implications and Usage

	The Load Generator
	The System's Parameters Configuration

	Experimental Evaluation
	Experimental Setup
	Subject System
	Critical Microservice Identification

	Scaling Engine Configuration
	Workload
	Chaos Mesh
	Chaos Injection
	Chaos Types

	Monitoring Metrics with Prometheus
	Experimental Discussion
	Experiment 1: Evolution under Constant Workload
	Experiment 2: Dynamic Scaling based on Workload

	Discussions and Future Works
	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity

	Future Work

	Conclusions
	Bibliography

