
Towards Efficient and Robust Caching:
Investigating Alternative Machine Learning

Approaches for Edge Caching

By Hoda Torabi,

A Thesis Submitted to the School of Graduate Studies in the Partial
Fulfillment of the Requirements for the Degree of Master of Science

GRADUATE PROGRAM IN COMPUTER SCIENCE

York University
TORONTO, ONTARIO

December, 2023

© Copyright by Hoda Torabi , 2023



Abstract
This study introduces HR-Cache, a caching framework designed to enhance the ef-

ficiency of edge caching. The increasing complexity and variability of traffic classes

at edge environments pose significant challenges for traditional caching methods,

which often rely on simplistic metrics. HR-Cache addresses these challenges by

implementing a learning-based strategy grounded in Hazard Rate ordering, a con-

cept originally used to establish cache performance upper bounds. By employing a

lightweight supervised machine learning model, HR-Cache learns from HR-based

caching decisions and predicts the ‘cache-friendliness’ of incoming requests, iden-

tifying ‘cache-averse’ objects as priority candidates for eviction.

Our experiment results demonstrate HR-Cache’s superior performance. It con-

sistently achieves 2.2–14.6% greater WAN traffic savings compared to the LRU

strategy and outperforms both heuristic and state-of-the-art learning-based al-

gorithms, while adding minimal prediction overhead. Though designed with the

considerations of edge caching limitations, HR-Cache can be adapted with minimal

changes for broader applicability in various caching contexts.

ii



Acknowledgements
I would like to extend my deepest gratitude to my supervisors, Dr. Hamzeh

Khazaei and Dr. Marin Litoiu, for their unwavering support and guidance. Their

invaluable advice and guidance were instrumental in the success of my graduate

studies.

I also want to thank my friends and colleagues from the Performant and Avail-

able Computing Systems (PACS) Lab and the Adaptive Software Research Lab.

Their support has been an important part of this journey, greatly contributing to

my research and personal growth.

A heartfelt thank you to my parents, for always loving me and supporting me.

Without them none of this would be possible.

Finally, to Farnood, who believed in me when I didn’t. I’m eternally grateful

for his support throughout this journey.

iii



Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Figures vii

List of Tables viii

Declaration of Authorship ix

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Reducing WAN Traffic . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Limitations of Existing Learning-based Methods . . . . . . . 5

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 8

2.1 Limitations of Existing Methods . . . . . . . . . . . . . . . . . . . . 8

iv



2.2 Hazard Rate-Based Upper Bound . . . . . . . . . . . . . . . . . . . 12

2.3 Hazard Rate Function . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Gradient Boosted Decision Trees . . . . . . . . . . . . . . . . . . . 15

2.4.1 Fundamental Mechanics of GBDT . . . . . . . . . . . . . . . 15

2.4.2 Algorithmic Workflow . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 Applications and Advantages . . . . . . . . . . . . . . . . . 16

3 Related Work 17

3.1 Learning-based Caching . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Distributed Caching Systems . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Machine Learning for System Efficiency and Improvement Beyond

Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 HR-Cache: Intelligent Caching 24

4.1 Hazard Rate Estimation . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Learning From HRO . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Design of HR-Cache . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.2 ML Architecture . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.3 The HR-Cache Policy . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.1 Batched Predictions . . . . . . . . . . . . . . . . . . . . . . 34

5 Experimental Validation 36

5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 C++ Language . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



5.1.2 LightGBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Kernel Hazard Estimation Validation . . . . . . . . . . . . . . . . . 39

5.3 Preliminary Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5 State-of-the-art algorithms . . . . . . . . . . . . . . . . . . . . . . . 43

5.6 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.7 Prediction Overhead Optimization . . . . . . . . . . . . . . . . . . 51

5.8 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Conclusion 56

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 Distributed HR-Cache . . . . . . . . . . . . . . . . . . . . . 58

6.2.2 Integration into Production Systems . . . . . . . . . . . . . 60

Bibliography 62

A Chapter 5 Supplement 70

vi



List of Figures

4.1 General Learning-Based Cache Architecture Overview . . . . . . . . 29

4.2 Architecture Overview of HR-Cache . . . . . . . . . . . . . . . . . . 33

5.1 HR-E Bound Comparison . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 IBM Trace Byte Miss under HR-Cache . . . . . . . . . . . . . . . . 41

5.3 Comparison of HR-Cache and SOA Algorithms . . . . . . . . . . . 49

5.4 Comparison of Byte Miss Ratios for HR-Cache, the Best Performing

Policy, and LRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Improvement of HR-Cache over the SOA under Ablation Study . . 55

vii



List of Tables

5.1 Hyperparameters of the LightGBM Model . . . . . . . . . . . . . . 39

5.2 IBM Web Access Trace Collected from a Gateway Router . . . . . . 39

5.3 Summary of the traces used in our evaluation. . . . . . . . . . . . . 42

5.4 Comparison of Prediction Batch Sizes and Prediction Times for

LRB and HR-Cache Algorithms . . . . . . . . . . . . . . . . . . . . 53

5.5 Prediction Overhead Reduction For Wiki 2018 . . . . . . . . . . . . 53

A1.1 Performance Comparison on Wikipedia 2018 Trace . . . . . . . . . 70

A1.2 Performance Comparison on Wikipedia 2019 Trace . . . . . . . . . 71

A1.3 Performance Comparison on CloudPhysics Trace . . . . . . . . . . . 71

A1.4 Performance Comparison on EU Trace . . . . . . . . . . . . . . . . 72

viii



Declaration of Authorship

I, Hoda Torabi, hereby declare that this thesis titled, “Towards Efficient and

Robust Caching: Investigating Alternative Machine Learning Approaches for Edge

Caching”, and the work presented herein are solely my own efforts. Parts of

this thesis have formed the basis of a paper submitted to the 15th ACM/SPEC

International Conference on Performance Engineering (ICPE) which is currently

under review.

ix



Chapter 1

Introduction

1.1 Overview

The proliferation of smart devices, coupled with advancements in wireless com-

munication technologies, has given rise to a multitude of multimedia applications

ranging from video streaming and gaming to virtual/augmented reality. These

applications are increasingly prevalent in domains such as the 5th Generation Mo-

bile Networks (5G), Internet of Things (IoT), and Internet of Vehicles (IoV) [1],

contributing to a substantial rise in network traffic. This surge in traffic is leading

to increased user latency and exerting considerable pressure on backhaul links,

which are crucial for connecting local base stations to the Internet. Furthermore,

the growing demand for high-throughput and stringent network performance due

to these advanced applications poses significant challenges to the existing infras-

tructure of conventional wireless networks.

To address the surging data traffic and meet the demanding performance re-

quirements of these applications, Multi-access Edge Computing (MEC) has emerged

1



as a key solution [2]. MEC enhances network performance by introducing com-

puting and caching capabilities at the network’s edge. Notably, network edges

are equipped with numerous edge servers to store content that users frequently

request. This allows users to access a wide range of content directly from edge

servers rather than remote cloud servers, significantly reducing latency in content

retrieval and easing the load on network traffic. This approach, known as edge

caching, is pivotal in various areas. In the context of 5G, popular content can be

cached at various Base Stations (BSs), such as Small Base Stations (SBSs) and

Macro Base Stations (MBSs). In the IoT sphere, content can be cached in smart

devices, edge gateways, or localized IoT servers to facilitate quicker access and

processing. For IoV, content can be stored at Roadside Units (RSUs) and within

vehicles. Additionally, extending Content Delivery Network (CDN) services to-

wards the mobile edge can help enhances user Quality of Experience (QoE) while

reducing the load on backhaul and core network infrastructures [2, 3]. The rele-

vance of this approach was highlighted by trends in CDN usage. In 2017, CDNs

accounted for 56% of Internet traffic, with projections at that time estimating an

increase to 72% by 2022 [4]. While this forecast is from a past perspective, it

underscores the anticipated significance of localized content delivery in managing

the increasing demands of internet traffic globally.

Since caches are typically situated on high-cost storage media with limited ca-

pacity, their sizes are generally much smaller than the sizes of the datasets they

serve. This discrepancy makes the selection of data to be cached a critical decision.

An efficient cache is one that stores data deemed most useful, thereby fulfilling a

greater number of requests directly from the cache instead of relying on backend

2



storage systems. The effectiveness of a cache is commonly evaluated using two

metrics: the hit ratio, which is the proportion of requests served directly from the

cache, and the byte hit ratio, which measures the fraction of data bytes served

from the cache in relation to the total bytes requested. When a cache reaches its

capacity limit, it employs an eviction algorithm to determine which data to retain

and which to remove. The choice and effectiveness of this eviction algorithm play

a pivotal role in maintaining high hit and byte hit ratios, thereby ensuring the

cache operates at optimal efficiency. As such, this problem has been extensively

studied since the advent of the internet. Caching strategies have evolved from

basic heuristic methods like Least Recently Used (LRU), which evicts the oldest

data first, to intricate algorithms that combine frequency and recency (e.g. Hyper-

bolic) and others that use a composition of frequency and object size (e.g. GDSF).

Despite extensive research, most production systems—such as those employed by

Akamai [5], Memcached [6], and NGINX [7]—commonly implement LRU variants

as their standard caching algorithm. Yet, these may not be ideally suited to the

particular demands of edge caching, which contends with limited cache sizes and

the unpredictable nature of user requests [8]. The challenge in designing effective

caching algorithms is that workload characteristics, like object access patterns or

request processes, are not constant and often change over time. Thus, a heuristic

that performs well for one workload scenario may falter in another, or fail to adapt

when access patterns evolve, underscoring the necessity for flexible caching strate-

gies that can overcome these challenges. The recent progress in Machine Learning

(ML) has paved the way for significant improvements in cache algorithms, ad-

dressing these challenges. ML techniques, known for their robust data handling

3



and precise pattern recognition capabilities, are being increasingly utilized in var-

ious caching contexts. For instance, reinforcement learning has been applied to

predict content popularity, aiding in proactive caching strategies as discussed in

[9]. Additionally, the use of supervised learning techniques in designing caching

algorithms, particularly for making informed replacement decisions, represents a

less explored yet promising area, as seen in [10]. This research is centred around

caching schemes that incorporate learning-based approaches, leveraging ML to

enhance cache performance and efficiency.

1.2 Motivation

1.2.1 Reducing WAN Traffic

Edge caching is strategically deployed to manage a significant portion of internet

traffic locally, aiming to enhance economic viability and mitigate potential impacts

on the broader Internet infrastructure. The effectiveness of these edge servers in

local content caching is crucial, as they act as a primary buffer against extensive

traffic influx. In instances where the edge cache fails to deliver requested content,

known as cache misses, the data must be retrieved via the wide-area network

(WAN), incurring additional load and potential delays. The growing volume of

data handled by edge caches has notable financial implications for network service

providers, especially when traffic at the edge is not optimally managed. Ensuring

low latency is vital for small, latency-sensitive items, while for larger content like

videos and large downloads, the focus shifts to reducing traffic management costs

and averting congestion at critical points in the network [11]. Consequently, one

of the primary objectives of edge caching is to increase the proportion of data

4



served directly from the cache – a measure known as the byte hit ratio (BHR).

This not only ensures efficient network operation but also plays a key role in cost

containment and maintaining network integrity.

1.2.2 Limitations of Existing Learning-based Methods

Edge caching effectively brings popular content closer to users, enhancing stor-

age resource optimization by reducing service latency and minimizing redundant

data transmissions across backhaul links. However, while machine learning tech-

niques have made significant strides in caching schemes, learning-based caching ap-

proaches still confront various challenges. These challenges underscore the neces-

sity to explore and develop more advanced and varied machine learning strategies

for caching, aiming to overcome existing limitations and further enhance caching

efficiency. Chapter 2 of this thesis provides an overview of these challenges, partic-

ularly those relevant to our proposed method. This targeted analysis shapes the

design considerations of our approach, ensuring that our development is informed

by the most relevant issues in the field.

1.3 Thesis Contributions

To achieve the above objectives, this research proposes a new learning-based

caching policy to improve caching performance while conforming to the limita-

tions of edge networks. The accuracy and effectiveness of the proposed scheme is

demonstrated by comprehensive experimental results with real-word and synthetic

datasets. The main contribution of this thesis are:

5



• Development of HR-Cache Using HRO Upper Bound: We introduce HR-

Cache, a novel caching policy leveraging the hazard rate ordering upper

bound (HRO) principle from [12], translating the prefetching-associated prin-

ciple into actionable insights for real-time cache decision-making.

• Integration of Machine Learning: We use lightweight machine learning to

develop an effective caching algorithm based on the HRO principle to inform

a caching policy based on the prediction of this model.

• Application of Non-Parametric Hazard Estimation: Our research uniquely

applies non-parametric hazard estimation for the HRO principle, enhancing

the effectiveness of the HRO principle, differing from the simplistic assump-

tions of prior work.

• Development in a C++ Trace-Driven Simulator: HR-Cache is developed

within a C++ based trace-driven simulator, ensuring accurate evaluation of

our caching framework and validating HR-Cache against a variety of work-

load scenarios.

• Comprehensive Testing with Diverse Traces: In departure from most works

in edge caching that report performance using a single trace, our research

conducts a comprehensive evaluation of HR-Cache using multiple workload

traces, including real-world data and synthetic scenarios.

• Optimizations for Reduced Prediction Overhead: The thesis presents op-

timizations in HR-Cache, such as parallelism and strategic cache updating

techniques, which allows us to significantly reduce prediction overhead and

6



enhance efficiency compared to contemporary learning-based caching algo-

rithms.

• Ablation Study: An ablation study validates the effectiveness of key contri-

butions; the non-parametric hazard estimation, and our approach of trans-

lating the prefetching-associated principle of the HRO into actionable in-

sights for real-time cache decision-making. The results of this demonstrate

the effectiveness of our main contributions, affirming the soundness of our

methodology in the context of HR-Cache.

1.4 Thesis Organization

The structure of this thesis is laid out in the following manner. Chapter 2 delves

into the necessary background details, setting the stage for our research. Chapter

3 covers related research work. Chapter 4 is dedicated to the detailed design and

implementation of HR-Cache. Chapter 5 presents the experimental validation and

discussion of our results. Finally, Chapter 6 concludes the thesis, reflecting on our

contributions and outlining potential directions for future research.

7



Chapter 2

Background

This chapter begins with a summary of significant works in the field, outlining the

essential lessons that have informed the development of our framework. Subse-

quently, we explore the concept of the hazard rate upper bound as introduced in

[12], which serves as a fundamental component of our methodology. Concluding

this chapter, we present a detailed overview of Gradient Boosted Decision Trees,

the supervised learning technique that plays a critical role in the architecture of

our framework.

2.1 Limitations of Existing Methods

A popular line of research is utilizing reinforcement learning for cache decisions.

Due to the large state-action space, these methods tend to be more complex

and computationally demanding. Additionally, they can be sensitive to hyper-

parameters, making it challenging to fine-tune their performance. Furthermore,

the delayed rewards common in reinforcement learning can result in slow reaction

8



times in dynamic environments. This may hinder the algorithm’s ability to adapt

quickly to changing content popularity patterns or user behavior [13].

Another category of recent research focuses on leveraging theoretically optimal

caching policies for developing learning-based methods. A significant point of

reference here is the Belady optimal policy [14]. This algorithm operates on the

principle of evicting the object that will be used furthest in the future, thereby

minimizing miss rate. While Belady’s algorithm provides an ideal strategy for

cache replacement, its real-world application has been limited because it requires

foreknowledge of future cache access patterns, which is generally not feasible.

Nevertheless, this algorithm forms a basis for designing practical caching policies.

Hawkeye [15] was the first to introduce learning from the Belady’s algorithm.

Hawkeye employs a binary classification model to determine whether a cache line

is likely to be reused (deemed ‘cache-friendly’) or not (‘cache-averse’). Their pol-

icy prioritizes the eviction of cache-averse lines over cache-friendly ones. By using

oracle labels for previous access patterns, Hawkeye effectively transforms cache

replacement into a supervised learning challenge. Building upon Hawkeye’s foun-

dation, Glider [16] enhances this approach by integrating deep learning techniques

to develop a more accurate predictor than its predecessor. However, it’s impor-

tant to note that both Hawkeye and Glider focus on hardware caches and are not

directly applicable to software cache systems, particularly those handling variable-

sized objects. Another work, Parrot [17] adopts an imitation learning approach

to automatically learn cache access patterns by leveraging Belady’s. Although

effective, its computational demands can be significantly high.

9



Diverging from Parrot’s methodology, LRB, as outlined in [10], employs a dif-

ferent strategy by predicting the next arrival times of object requests. This enables

LRB to approximate Belady’s algorithm through a supervised learning method.

By learning the next access time for each object based on a multitude of features,

LRB identifies and evicts objects predicted to have the furthest request time. This

strategy has demonstrated enhanced performance over state-of-the-art caching al-

gorithms in terms of byte hit ratios. However, LRB is not without its limitations.

To closely emulate the optimal offline oracle, a system like LRB is required to pre-

dict the next access times for all objects in the cache, selecting for eviction the one

with the most distant future request. This prediction process can be extremely

resource-intensive for large caches. LRB mitigates this by limiting the inference to

a sample of 64 objects for each eviction. Despite this optimization, the prediction

overhead remains a significant computational burden. LRB’s use of dynamic fea-

tures means that prediction results are not reusable over time, necessitating fresh

sampling and inference for every eviction. Reflecting this overhead, on a single

CPU core, each eviction in LRB consumes 227.19 µs.1 Consequently, this caps the

eviction rate at a maximum of approximately 4,500 objects per second per core,

rendering it less efficient for high-demand production environments.

LFO [13], another work employing supervised learning, first calculates the se-

quence of optimal caching decisions (OPT) for recent history using a min-cost flow

model from [18], designed for optimal caching of variable-sized objects. Following

this calculation, LFO applies manually-designed features and a gradient boosting

decision tree to train a binary classifier for caching decisions. The classifier’s pre-

diction is then used to imitate the admission policy of OPT and serve as a ranking
1For 64 GB cache size, Wikipedia 2019 workload

10



metric for the eviction policy. However, the process of deriving optimal decisions

based on the min-cost flow model is complex and computationally intensive, hin-

dering LFO’s ability to swiftly adapt to workload changes. Additionally, its design

necessitates executing a prediction for every incoming request, further impacting

its practical efficiency.

Inspired by similar principles to our work, LHR in [19] draws on the concept

of the Hazard Rate bound from [12] to develop a learning-based caching policy.

Unlike a direct adoption, LHR modifies this approach by constructing an online

upper bound, which approximates the request process through a Poisson process.

Under this assumption, the hazard rate remains constant and is equivalent to

the request rate for each object. While this approach simplifies their model, it

considerably narrows the applicability of LHR [20]; particularly in light of [12]’s

demonstration that the HRO upper bound is effective for any stationary arrival

process. Thus, LHR’s reliance on the Poisson assumption potentially restricts the

full exploitation of HRO’s capabilities.

Given these limitations, it is crucial to investigate alternative machine learn-

ing approaches for caching that can overcome these challenges, while achieving a

high byte hit ratio. In this research, we focus on exploring new learning-based

caching policies that address the limitations of current algorithms and target the

fundamental constraints of existing caching methods. It has been observed that

there is a significant gap between the hit probabilities of state-of-the-art caching

algorithms and upper bounds of optimal policies (OPT) such as the offline Belady

algorithm [21], Flow-based offline optimal [18], and the more recent Hazard Rate

11



(HR) based upper bound [12]. Our goal is to leverage the Hazard Rate based up-

per bound to inform the design of learning-based caching methods. Considering

the insights gained from the overview of existing works, our framework’s design

will be informed around these pivotal lessons:

1. Utilization of HRO Bound: Taking into account the limitations of LHR’s

Poisson assumption, our approach will seek to fully leverage the HRO bound’s

potential, avoiding oversimplified assumptions that could undermine the

practicality and justification of using machine learning.

2. Minimizing Prediction Overhead: Addressing the challenge of high

computational demands seen in methods like LRB, our framework will prior-

itize efficient prediction mechanisms to enhance scalability and performance.

3. Decision-Making Process: Considering the complexity of the LFO ap-

proach, we aim to create an efficient method for making caching decisions.

This is important in fast-paced environments where models need regular up-

dates and training. Our approach is designed for quick adjustments to stay

up-to-date with frequent changes.

]

2.2 Hazard Rate-Based Upper Bound

The framework in [12] considers a caching system serving n distinct objects, pos-

sibly of different sizes, with a cache capacity of B bytes. In its most basic case,

it considers a cache with capacity B, catering to requests for n distinct objects of

12



equal size. In this context, [12] introduces the hazard rate based rule, termed as

HR-E, which operates as follows:

• At any given time t, HR-E first determines the hazard rate function for each

object.

• Then it places in the cache the B objects which have the largest hazard rates

(ties between equal rates are broken randomly) .

• A request at time t is considered a ‘hit’ if the requested object is among

those cached based on the aforementioned criteria.

They use this rule as a way to upper-bound various cache performance metrics

including object hit and byte hit ratio.

They further extend this rule to obtain an upper bound on the byte hit prob-

ability for variable size objects. In this case, the authors adapt the hazard rate-

based rule denoted as HR-FC to accommodate fractional caching, a strategy that

permits the storage of a fraction of an object. Specifically, the rule at any time

caches objects with the highest hazard rates until an object cannot fit. For the

object that cannot be fully fit due to limited remaining cache capacity, only a

sufficient number of bytes required to reach the cache limit are stored. In the case

for equal-sized objects, the HR-E rule serves as an upper bound on the cache hit

probability for non-anticipative caching policies, while HR-FC serves as an upper

bound on the cache byte hit probability, which is the metric we are interested in.

Throughout this work, we will collectively refer to these rules as the the ‘HRO’

rule (hazard rate ordering rule) for consistency and ease of reference.

13



The work in [22] derives closed form expressions for the upper bound under

some specific object request arrival processes, such as Poisson Process, On-Off

Request Process, Markov Modulated Poisson Process, and Shot Noise Model.

2.3 Hazard Rate Function

Let us consider the sequential times at which object i is accessed as {τik | k ∈ Z}.

The time interval between consecutive requests—namely, the kth and (k − 1)th

requests—for the same object i is termed Xik and computed as τik − τi(k−1), for

k ≥ 1. By default, τi0 is set to zero. The sequence {Xik}k≥1 is assumed to form

a stationary point process, with the cumulative distribution function (c.d.f) for

the inter-arrival time given as Fi(t) = P(Xik ≤ t), and its corresponding density

function is represented as fi(t).

The hazard rate function, denoted as λi(t), associated with Fi(t) is defined as

follows:

λi(t) = fi(t)
1 − Fi(t)

, t ∈ [0, F −1
i (1)], (2.1)

Here, the hazard rate function is the conditional density of the occurrence of

an object request, given the realization of the request process over [0, t) [23]. It is

noteworthy that the hazard rate function’s meaning can vary based on its appli-

cation context. For example, in survival analysis, the hazard rate quantifies the

conditional probability of an item’s failure, given that it has remained functional

up to a specific time point. In caching terminology, we can treat failure/death of

an item as an object being requested.

14



2.4 Gradient Boosted Decision Trees

Gradient Boosted Decision Trees (GBDT) are a potent and widely-utilized ma-

chine learning technique, particularly known for their efficacy in handling tabular

data. This ensemble learning method, primarily used for regression and classifi-

cation tasks, leverages the concept of boosting in conjunction with decision tree

algorithms, optimizing an arbitrary differentiable loss function through iterative

enhancements.

2.4.1 Fundamental Mechanics of GBDT

GBDT operates on the principle of sequentially integrating multiple weak learn-

ers—specifically, decision trees—to construct a comprehensive and accurate model.

Each weak learner in this context is a basic model that provides predictions slightly

better than random chance. The sequential integration of these trees is meticu-

lously designed to rectify the residual errors from the preceding aggregate of trees,

with the objective loss function varying based on the task - be it regression, clas-

sification, or others.

2.4.2 Algorithmic Workflow

1. Initial Model Establishment: GBDT begins with an elementary model,

often a simple mean of the target values for regression problems or log odds

for classification challenges. This initial model sets the foundation for sub-

sequent refinement.

15



2. Iterative Enhancement Process: At each stage, GBDT constructs a new

decision tree aimed at modeling the residual errors of the existing ensemble.

These residuals represent the divergence between the current predictions of

the ensemble and the actual observed values.

3. Employing Gradient Descent for Optimization: The boosting mecha-

nism in GBDT utilizes the gradient descent algorithm to minimize the loss

function. Each iteration fits a new tree to the negative gradient of the loss

function, thereby incrementally steering the model toward reduced loss and

improved accuracy.

4. Regularization Techniques: To mitigate overfitting and manage model

complexity, GBDT integrates parameters like the learning rate and tree

depth. The learning rate adjusts the influence of each new tree in the ensem-

ble, while a restricted tree depth helps in curbing the model’s complexity.

2.4.3 Applications and Advantages

GBDT have been effectively utilized in a wide array of data science competitions

and practical scenarios, ranging from enhancing search engine algorithms to opti-

mizing recommendation systems. Its scalability and capability to handle different

data types, including missing values and mixed types (numerical and categorical),

contribute to its popularity. This attribute, along with its lack of requirement for

feature normalization, renders GBDT particularly suitable for a broad array of

applications. Additionally, GBDT offers interpretability advantages over complex

models like neural networks. In the specific context of caching, the effectiveness

of GBDT is supported by studies like [10] and [13].

16



Chapter 3

Related Work

This chapter provides a comprehensive overview of existing literature in the do-

main of caching, with a particular focus on optimization and learning-based caching

approaches. We then delve into studies that extend beyond conventional single-

cache frameworks, exploring advancements in distributed caching systems. The

latter part of this chapter is dedicated to a review of recent advancements in em-

ploying machine learning techniques for enhancing system efficiency and perfor-

mance. This exploration will contextualize our work within the broader landscape

of caching and machine learning applications in system optimization.

3.1 Learning-based Caching

In the study by [24], the authors investigate a machine learning-based approach

for Web proxy caching, focusing on predicting the likelihood of an object being

re-visited. To construct their training dataset, they extract pertinent features

of Web objects from trace logs and proxy files. These features are then used to

train models using labels: ‘1’ for content that is re-requested and ‘0’ otherwise.

17



The models are trained using Support Vector Machine (SVM) and Decision Tree

algorithms, exploring their effectiveness in accurately making cache replacement

decisions.

The authors in [25] investigate the problem of optimal content caching in a

private wireless small cell base station (sBS) with limited backhaul. The authors

model this problem as a multi-armed bandit (MAB) problem and propose three

caching algorithms to efficiently learn unknown but time-invariant popularity pro-

files by balancing exploration and exploitation and subsequently cache the most

popular files for a pre-defined time period.

In [26], a deep reinforcement learning (DRL) approach is proposed for mak-

ing cache replacement decisions (whether or not to store the currently requested

content in the cache, and if yes, to determine which local content to replace) at a

base station with the goal of maximizing the cache hit rate in order to reduce the

data traffic. The framework is built on the Wolpertinger architecture and trained

using the deep deterministic policy gradient. Although the performance of the

proposed framework shows both short-term and long-term cache hit rates im-

provement compared to LRU, LFU, and FIFO policies, the authors only consider

equal-sized contents.

In PopCaching [27], a learning-based caching algorithm is proposed that pre-

dicts content popularity based on the context of requests. It employs a context

vector with four dimensions, representing request frequencies in different time win-

dows. Rather than directly learning content popularity, PopCaching learns the

18



relationship between future popularity and request context using a dynamic par-

titioning approach. This method divides the context space into non-overlapping

hypercubes, allowing PopCaching to exploit similarities in access patterns and

adapt to evolving content popularity patterns. However, it only uses a very lim-

ited feature set as it relies only on request frequencies. This limited feature set

might not capture all relevant factors affecting content popularity, potentially im-

pacting prediction accuracy.

Recent research has increasingly concentrated on employing theoretically op-

timal caching policies as a foundation for developing learning-based approaches.

This topic was elaborated upon in Section 2.1, highlighting our focus on integrat-

ing these methodologies.

3.2 Distributed Caching Systems

The mentioned works primarily concentrate on developing caching strategies for

a single caching entity. Another prevalent scenario in edge networks, however,

involves a network of interconnected caching nodes working together.

Earlier works in this regard mostly focus on utilizing traditional methods based

on convex optimization or probability modeling to address the content placement

problem for IoT/distributed networks. For instance, the study presented in [28]

examines a cache cluster composed of multiple leaf-cache nodes and a parent-

cache node either connected directly or via a parent node. The research focuses

on determining the optimal content placement in cache nodes to minimize total

bandwidth consumption, offering approximate solutions for specific scenarios. In

19



another work [29], the authors present a general optimization problem to deter-

mine optimal content placement policies for caches installed across multiple levels

of hierarchies, formulated as an integer optimization problem which takes into

account the possibility of varying content demand patterns across leaf nodes. The

study demonstrates that the problem is NP-Hard in its general form but can be ex-

pressed as the maximization of a submodular function subject to uniform matroid

constraints.

Another line of work is based on learning algorithms such using machine learn-

ing or deep learning. For instance, in [30] the authors develop a video content

caching scheme for cellular networks to enhance user QoE and reduce backhaul

traffic. The approach uses an extreme learning machine approach for predicting

global future content popularity based on human perception-informed features.

The adaptive caching scheme combines mixed-integer linear programming opti-

mization for cache placement at the initialization of the cache and an improved

version of LRU (S3LRU) for cache replacement.

In [31], the authors introduce a reinforcement learning approach for proac-

tive caching that accounts for the space-time popularity of user requests. They

develop a Q-learning caching algorithm to learn the optimal policy while consid-

ering the unknown transition probabilities of the popularity dynamics. The small

base stations (SBs) estimate their local popularity profiles and share them with the

network operator, which aggregates them to estimate the global popularity vector.

Their method adjusts the reward to balance tracking global trends and serving

local requests, making it suitable for handling geographically and temporally vari-

able cellular traffic. However, the Q-learning-based method might not be feasible

20



for practical mobile edge computing systems due to the large state-action space in-

volved. In [32], the authors propose a deep reinforcement learning approach based

on hyper deep Q-networks (DQNs) for adaptive caching in a hierarchical content

delivery network, which features a two-level network structure with one parent

node and multiple leaf nodes, similar to the structure we will consider in Section

??. In this setup, leaf nodes rapidly gather request information, while the parent

node takes caching decisions at the beginning of each slow-timescale slot, based on

the collected data from the leaf nodes. This method enables an effective balance

between fast and slow timescales for more efficient caching decisions in a collabora-

tive network. Finally, [33] model cache replacement as a Markov Decision Process

(MDP) and propose a Double Deep Q-Network (DDQN) approach for handling

this task. Additionally, they introduce a Federated Learning framework, allow-

ing users to collaboratively learn a shared model while keeping raw data local.

This framework enables edge nodes, such as base stations, to learn a global model

by averaging local updates, thereby enhancing the efficiency and security of the

caching process in the network.

3.3 Machine Learning for System Efficiency and

Improvement Beyond Caching

Building on the exploration of machine learning applications in caching for system

enhancement, the scope of ML and deep learning (DL) extends far beyond, per-

meating various other aspects of system performance and efficiency. This section

delves into the diverse applications of these technologies across different system-

related domains, highlighting how ML and DL are instrumental in advancing and

21



optimizing system functionalities beyond caching solutions.

For instance, [34] employ deep neural networks (DNNs) for optimizing resource

management in edge computing environments, enabling dynamic scheduling in

distributed fog systems by estimating key Quality of Service (QoS) metrics. In

another work, [35], the authors utilize recurrent neural networks to develop perfor-

mance models for queueing networks, aiming to improve resource utilization based

on it. For database efficiency, [36] leverage tree convolutional neural networks and

reinforcement learning to optimize queries , while [37] apply machine learning

techniques for effective database indexing. Similarly, In a study by Google [38],

the application of machine learning in data center (DC) optimization is explored,

demonstrating its pivotal role in enhancing operational efficiency. This research

employs a neural network framework to accurately model and predict Power Usage

Effectiveness (PUE), showcasing the capability of machine learning to effectively

utilize existing sensor data in complex DC environments. In the study [39] at Mi-

crosoft, the authors delve into the intricacies of query optimization for big data sys-

tems, confronting the challenges posed by the increasing complexity of workloads

and the nuanced dynamics of cloud environments. To navigate these complexities,

they introduce “Microlearner” a machine learning-based optimizer tailored for Mi-

crosoft’s extensive big data workloads. This optimizer is distinguished by its use

of fine-grained learning models that train on subsets of workload data, enabling

it to adeptly handle the diverse and evolving nature of cloud-based systems. By

applying this method to Microsoft’s SCOPE query engine, “Microlearner” aims

to improve the process of query optimization, demonstrating a new approach to

handling the intricacies of big data processing in a cloud context. In networking

22



research, [40] propose a Robust statistical Traffic Classification (RTC) scheme for

traffic classification in big data systems. This scheme is designed to address the

challenge of identifying zero-day applications, which are previously unknown in

traffic classification systems. They utilize a combination of supervised and unsu-

pervised machine learning techniques to improve the accuracy of classifying both

zero-day and known application traffic. The research focuses on enhancing traf-

fic classification performance in the context of ever-evolving network traffic and

applications. In another work, [41], the authors investigate the use of deep rein-

forcement learning for addressing resource management problems in systems and

networking. They introduce DeepRM, a model that applies deep reinforcement

learning techniques to the complex task of resource management, particularly fo-

cusing on the allocation and scheduling of tasks with varying resource demands.

DeepRM is designed to learn optimal resource management strategies directly from

experience, positioning it as a machine learning-driven alternative to conventional

heuristic-based approaches in system and network resource management.

23



Chapter 4

HR-Cache: Intelligent Caching

In this section, we first discuss the application of non-parametric estimation for

hazard rate calculation. We then explain how we harness the Hazard Rate Or-

dering rule as a fundamental principle for our learning-driven approach. Subse-

quently, the section outlines the crucial design choices that shape our HR-Cache

framework. The chapter concludes by bringing together these concepts to present

the complete HR-Cache framework. The primary goal of HR-Cache is to assess

whether a requested object is cache-friendly or cache-averse. Upon a cache miss,

the requested object is inserted into the cache; however, objects identified as cache-

averse are placed in a candidate queue for potential future eviction. HR-Cache

gives priority to evicting objects from this candidate queue, resorting to the main

queue only when the candidate queue becomes empty.

24



4.1 Hazard Rate Estimation

To effectively implement hazard rate-based rule in our framework, we must first

accurately determine the hazard rate function for each object. While this is rel-

atively straightforward for synthetic data sets, it poses a significant challenge in

real-world production settings. One approach to this challenge is approximating

the inter-request times of objects using well-defined distributions, such as Pois-

son [19] or Generalized Pareto [12]. However, relying solely on these approxi-

mations could potentially diminish the benefits of leveraging machine learning in

cache decision-making since these approximations may not be universally applica-

ble across varying workloads and use-cases. Therefore, to calculate hazard rates

that are adaptable to various workload trace distributions, we use the kernel haz-

ard estimator proposed by [42]. We obtain this estimator by applying smoothing

to the increments of the Nelson-Aalen estimator.

The Nelson-Aalen estimator is a non-parametric method used to estimate the

cumulative hazard function in survival analysis. Unlike parametric methods, which

make specific assumptions about the underlying hazard rate distribution, the

Nelson-Aalen estimator does not require any such assumptions. We denote H(t)

as the cumulative hazard function at time t. The estimator is given by:

H(t) =
∑

j:tj≤t

dj

nj

where tj are the observed event times, dj is the number of events at time tj, and

nj is the number of subjects at risk just before time tj. However, the Nelson-Aalen

25



estimator results in a step function, which is not differentiable. Instead, kernel

smoothing techniques are utilized to smooth the increments of the cumulative

function estimate obtained by the Nelson-Aalen estimator [43]. The kernel hazard

estimator we use takes the form:

λ(t) = 1
h

n∑
i=1

K
(

t − ti

h

)
∆H(ti)

where K(·) is a kernel function (e.g., Epanechnikov kernel), h is the bandwidth,

determining the width of the smoothing window, and ∆H(ti) is the increment in

the Nelson-Aalen estimate at time ti, which is di

ni
.

The Epanechnikov Kernel The Epanechnikov kernel is a non-parametric ker-

nel function widely used in statistics, particularly in the fields of kernel density

estimation and non-parametric regression. It is defined mathematically as follows:

K(u) =


3
4(1 − u2) for |u| ≤ 1

0 for |u| > 1

Here, u represents the scaled distance from the point of estimation, and the

kernel is only non-zero within the interval [−1, 1].

The Epanechnikov kernel is favored in many statistical applications for several

reasons:

• Optimal MISE: It minimizes the mean integrated squared error (MISE)

26



in kernel density estimation, making it an efficient choice for accurate prob-

ability density function estimation.

• Compact Support: Its compact support (|u| ≤ 1) ensures computational

efficiency, as only a limited range of data points affect the estimation at each

point.

• Effective Distance Weighting: The kernel naturally weights observations

based on their distance, giving more influence to points closer to the target,

which is embedded in its parabolic shape within its support.

• Bias-Variance Trade-off : It offers a desirable balance between bias and

variance, which is crucial in statistical estimation.

• Simplicity and Practicality: The Epanechnikov kernel’s simple form fa-

cilitates ease of implementation and understanding.

• Reduced Boundary Bias: The kernel’s compact support can help mitigate

boundary bias in density estimation, especially at data range edges.

4.2 Learning From HRO

Before diving into the learning process, it is crucial to make a key observation. We

argue that since the HRO bound (Section 2.2) is derived in a pre-fetching manner,

it does not directly correspond to cache decision at the time of request to an object.

Specifically, the HRO rule assumes that at any time t, the objects with the highest

hazard rates among all available objects, have already been pre-fetched and are

present in the cache. Thus, the requested object at time t is considered a hit if

27



it is among objects in the cache. Based on this, for object i to be considered as

cached in the system, the previous request to object i must admit it to the cache.

Or in other words, when the request at time t arrives, it can only be considered a

hit if object i was already cached due to a prior request. We classify these earlier

requests as cache-friendly, as they are the ones leading to hits. With this and the

HRO rule as a backdrop, we are set to develop a learning-based caching strategy.

Our approach employs a sliding window of past requests W [k]. Using the gathered

requests in W [k], we do three things:

1. First, using the inter-request times of objects in the window we calculate

the increments of hazard rates for each object according to the Nelson-Aalen

estimator, to be later smoothed by the kernel hazard estimator.

2. Second, we go over the requests in the window and mark them as hit/miss

based on the HRO rule. Meaning for each request at time t, we compute the

hazard rate at time t for every object within the window using the kernel

estimator, and consider objects with the highest hazard rates in cache until

one doesn’t fit. If the object requested at time t is among the cached objects,

it is considered as a hit; otherwise, it is considered as a miss.

3. Next, we examine the requests in the window once more: For each request

i that was marked as a hit in the first step, we mark the previous request

to i as cache-friendly. This provides us with a vector of cache decisions

for requests in the window, which serves as the label data for our machine

learning model training.

HR-Cache then trains a model that maps features to the decision derived in step

28



Figure 4.1: General Learning-Based Cache Architecture
Overview

3. The trained model is subsequently used over the next window, W [k + 1], to

inform cache decisions during which HR-Cache again records the requests.

4.3 Design of HR-Cache

This section presents the design details of HR-Cache, which uses ML to imitate

the HRO algorithm. In developing an effective machine learning-based caching

system, we focus on balancing the reduction of byte miss ratios with the feasibility

of system implementation. This process entails addressing several interrelated

design challenges:

1. Generation of Training Data: A key aspect of our approach is the dy-

namic generation of training datasets, using historical data. Given the vari-

ability in workloads over time, the system must be capable of regular retrain-

ing with new, accurately labeled datasets. This also involves determining

29



the appropriate amount of past data to use. While a larger dataset can po-

tentially improve the training quality, it is imperative to optimize memory

usage to ensure sufficient resources are available for caching.

2. Machine Learning Architecture: Selecting an effective ML architecture,

this involves feature selection and prediction target.

3. Caching Policy Implementation: The final challenge involves the strate-

gic use of the model’s predictions in forming a caching policy. This step is

critical in translating the insights gained from the ML model into effective

caching decisions.

The subsequent sections will explore the specific design decisions made for HR-

Cache, tackling each of these challenges to create a cohesive and efficient caching

solution.

4.3.1 Training Data

An important design issue involves determining the optimal amount of past infor-

mation to utilize. We adopt a sliding window approach, using the data within this

window for hazard estimation, deriving the HRO cache decision, and model train-

ing. The choice of window size significantly impacts the system’s effectiveness.

A small window might result in few data for training or hazard rate estimations,

while a window that is too large could lead to increased memory usage, as well as

longer processing and training times. While some studies arbitrarily define their

window sizes (e.g., [13] opts for a window of 1 million, [44] for the initial 10 million

requests), [15] considers window size as a factor of cache capacity, 1× represents

30



a window that consists of accesses to k cache lines, where k is the capacity of the

cache. We choose a 3× window, meaning the unique bytes of object requests in

the window is three times the cache size as we find that this works well across all

our experiments, however there is room for investigating how to set an optimal

window size. In practice, the sliding window can encompass millions of objects,

which presents significant challenges for the labeling process, particularly when

reconstructing the HRO-Rule. To address this issue, HR-Cache employs a strat-

egy of randomly sampling objects within the window to generate training samples.

The sampling rate is automatically calibrated to ensure that the total number of

operations stays within a manageable range, thus preventing the computational

overhead from becoming prohibitive. In our C++ implementation, this adaptive

approach has proven to be effective, yielding favorable results while keeping the

computational demands at a reasonable level.

4.3.2 ML Architecture

This subsection describes the components of HR-Cache’s ML architecture.

Features

When designing a machine learning model for cache decision, it is essential to

choose relevant features that can help predict the optimal decision. Our chosen

features encompass both the insights from past heuristics and the insight of recent

learning-based caching policies. Traditional caching heuristics focus on individual

metrics, such as object recency (as seen in LRU), its frequency (as in LFU), or

object size. This is while learning-based methods allow us to incorporates a range

31



of them. We consider the following features which can be derived in an online and

robust manner.

1. Delta series: The time differences between consecutive requests for an

object. ∆1 indicates the amount of time since an object was last requested.

∆2 indicates the time in between an object’s previous two requests and so

on, i.e., ∆n is the amount of time between an object’s nth and (n − 1)th

previous requests. This can provide insights into the object’s access pattern,

which can help predict future requests. We use 32 deltas as our features.

2. Decayed frequency: Unlike simple frequency, decayed frequency accounts

for the recency of requests by giving more weight to recent accesses. It

calculates the fraction of requests for an object among all requests so far,

but with a diminishing emphasis on older requests. This approach helps

in capturing not just how often an object is requested, but also how its

popularity or relevance changes over time.

3. Static features: These include unchanging characteristics of an object,

such as its size and type. Static features can be useful due to their inherent

correlation with different access patterns. For our implementation we only

consider size among static features due to the availability of data in our

traces.

Training HR-Cache

The primary objective of HR-Cache is to utilize its feature set to determine if an

incoming request is conducive to caching (‘cache-friendly’) or not (‘cache-averse’),

32



Figure 4.2: Architecture Overview of HR-Cache

in alignment with the Hazard Rate Ordering (HRO) rule. For this purpose, we

have selected the Gradient Boosted Decision Trees (GBDT) model, as outlined in

Section 2.4. This choice is grounded in the strengths and applicability of GBDT

to our specific caching context. We incorporate logistic regression as the objective

function within the GBDT framework, finding that it offers improved performance

for the binary classification task central to our caching strategy.

4.3.3 The HR-Cache Policy

Putting it all together, we design a caching policy guided by our learned model.

For every object request, our HR-Cache predictor outputs a decision indicating

whether the object is cache-friendly or cache-averse. This decision guides how

we update the cache as detailed in Algorithm 1. The goal is to manage objects

so that cache-averse items end up in the candidate queue, while cache-friendly

ones are placed in the main queue. The candidate queue consists of objects that

the HR-Cache identifies as unlikely to lead to hits, hence prioritized for eviction.

33



Meanwhile, the main queue operates on an LRU basis, ensuring that if we need

to evict from the main queue, it’s the older objects that are removed.

Algorithm 1 HR-Cache Policy
1: procedure UpdateCache(object, lookupTable)
2: Perform lookup for object in lookupTable
3: if object is in cache (Hit) then
4: if object is in Candidate Queue then
5: if predicted as Cache-friendly then
6: Change mode to Main Queue
7: Move object from Candidate to Main Queue
8: end if
9: else if object is in Main Queue then

10: if predicted as Cache-friendly then
11: Promote object to MRU in Main Queue
12: else if predicted as Cache-averse then
13: Change mode to Candidate Queue
14: Move object to Candidate Queue
15: end if
16: end if
17: else ▷ Request not in cache (Miss)
18: if predicted as Cache-friendly then
19: Add object to Main Queue
20: else
21: Add object to Candidate Queue
22: end if
23: end if
24: end procedure

4.4 Optimizations

4.4.1 Batched Predictions

The basic HR-Cache needs to predict cache-friendliness of objects as each request

arrives. To take advantage of the architectural strengths of multi-core processors

in contemporary CDN and edge servers, we implement data parallelism in our

34



cache decision-making. This modification permits parallel predictions for B re-

quests simultaneously. The chosen batch size, B, plays a critical role in balancing

parallelism and miss ratio. A small B fails to fully utilize the potential of paral-

lelism, while an excessively large B can lead to delayed predictions and negatively

affect the miss ratio. We selected a batch size of B = 128, finding it optimal for

harnessing parallelism without affecting our miss ratio. For instance, in our ex-

periments, which do not account for object retrieval overhead, a batch size of B =

128 enabled an increase in throughput from handling 11,828 requests per second

to 98,404 requests per second, while maintaining cache performance efficiency on

the Wiki 2019 trace.

35



Chapter 5

Experimental Validation

This section describes traces, the setup of our experiments, the competing algo-

rithms, and the parameter settings of HR-Cache. Unless otherwise noted, the

reported results for HR-Cache are based on its default operation settings, which

include batch-mode inference with a batch size of 128. We conduct trace-driven

experiments to evaluate the performance of HR-Cache against a broad spectrum

of state-of-the-art caching algorithms. Our analysis primarily focuses on two key

questions: First, we examine how the byte miss ratio of HR-Cache compares with

that of other state-of-the-art research systems across a variety of traces and cache

sizes. Second, we assess how HR-Cache performs in relation to the state-of-the-

art (SOA) learning-based cache mechanisms, particularly in terms of prediction

overhead.

5.1 Implementation

We developed our framework in C++ to accurately assess our framework’s miss

ratios by replaying cache requests from traces. We use the LightGBM library for

36



the GBDT model training.

5.1.1 C++ Language

In the development of our caching framework, the choice of programming language

was pivotal. We opted for C++ due to its well-acknowledged high-performance

capabilities, which are essential in handling the intensive computational demands

of caching mechanisms. It also offers fine-grained control over memory and system

resources, a feature critical in optimizing the performance of caching algorithms.

This control allows for the efficient handling of large datasets and high-speed data

processing, ensuring that our implementation operates with minimal latency and

maximum throughput.

C++’s combination of advanced features such as templating and object-oriented

programming significantly contributed to the development of a robust and scalable

caching algorithm. Its capabilities for both low-level manipulation and high-level

abstraction were instrumental in crafting an efficient, resource-manageable caching

solution. Furthermore, C++’s compatibility with a variety of optimization algo-

rithms and techniques greatly enhanced our method’s performance and reliability.

These attributes render C++ particularly suitable for high-performance comput-

ing applications like ours, and facilitate the potential integration into existing

caching frameworks.

5.1.2 LightGBM

LightGBM, Light Gradient Boosting Machine, developed by Microsoft as part

of their Distributed Machine Learning Toolkit, stands as a prominent gradient

37



boosting framework based on decision tree algorithms, designed for efficiency and

high performance, especially in large-scale machine learning tasks.

One of the key features of LightGBM is the Gradient-based One-Side Sam-

pling (GOSS), which retains instances with large gradients and performs random

sampling on instances with small gradients. This approach not only maintains

accuracy but also significantly improves computational speed. Alongside, Exclu-

sive Feature Bundling (EFB) is employed to reduce the dimensionality of data.

EFB bundles mutually exclusive features, thereby reducing the number of features

without losing valuable information, further enhancing the efficiency of the model.

Handling large datasets is one of LightGBM’s strengths, attributed to the im-

plementation of both GOSS and EFB. This makes LightGBM a practical choice

for big data applications, where traditional gradient boosting methods may not

be feasible due to memory constraints. Additionally, LightGBM supports paral-

lel learning and is optimized for distributed computing, including GPU support,

which offers faster computations necessary for large-scale machine learning tasks.

Another significant advantage of LightGBM is its native support for categori-

cal features. This capability simplifies the data preprocessing pipeline, as it can

manage categorical features without requiring extensive pre-processing to convert

them into numerical values. This feature sets LightGBM apart from many other

boosting frameworks that lack such native support.

In terms of performance, LightGBM often surpasses other gradient boosting

frameworks. The combination of GOSS and EFB, along with other algorithmic

optimizations, contributes to this enhanced performance. LightGBM is also known

38



for its flexibility and ease of integration into various programming environments.

It supports high-level programming languages such as Python and R, and impor-

tantly for our application, offers native support for C++. This compatibility with

C++ is particularly beneficial for scenarios requiring the performance optimiza-

tions and robustness provided by the language.

Hyperparameter Value
Learning Rate 0.1
Max Depth 50
Number of Trees 100
Max Number of Bins 255
Objective logistic regression

Table 5.1: Hyperparameters of the LightGBM Model

5.2 Kernel Hazard Estimation Validation

We use a real-world IBM trace from [12], to test the validity of the non-parametric

hazard estimator. Details about the trace are provided in Table 5.2.

Trace length 3.7 million
Unique objects 5638

Table 5.2: IBM Web Access Trace Collected from a Gateway Router

For our experiment, we derive the upper bound on hit probability using the HR-

E ordering rule with three different estimators. The first method employs the non-

parametric estimator introduced earlier in section 4.1. The study by [12] effectively

estimated the hazard rate for each object in the IBM trace, assuming a Generalized

Pareto distribution for inter-request times. We include the HR-E upper bound

calculated under their estimator for validation. Additionally, we explore the HR-

E upper bound assuming request processes follow a Poisson process. For further

39



comparison, we also present the object hit probabilities attained by the LRU and

Belady’s algorithms. The results of these comparisons, run under 3 different cache

sizes, is illustrated in Figure 5.1.

Figure 5.1: HR-E Upper Bound Comparisons and Hit Probabil-
ities for LRU and Belady’s Algorithms Across Three Cache Sizes.

As can be seen, the kernel hazard estimation method we use gives us an upper

bound that aligns with the expected bound derived using the ‘good’ parametric

estimator of the Generalized Pareto distribution. This confirms that kernel hazard

estimation is indeed suitable for our use case. As anticipated, the simplistic nature

of the Poisson assumption results in LRU outperforming it. Moreover, our results

40



reaffirm the tighter bound achieved by the HR-E rule compared to the Belady

algorithm, consistent with the findings in [12].

5.3 Preliminary Evaluation

Figure 5.2: Comparison of HR-Cache to State-of-the-Art Heuris-
tic Caching Systems For the IBM trace.

For a preliminary evaluation, we use the IBM request trace to assess the ef-

fectiveness of our learning framework without the sampling and training window

considerations. Given the trace’s limited length, we use the initial one million re-

quests to derive HRO decisions as outlined in Section 4.2. Subsequently, we train

a model based on these decisions and apply the HR-Cache policy to evaluate the

byte hit ratio on the remainder of the trace. As depicted in Figure 5.2, HR-Cache

demonstrates its effectiveness by achieving a Byte Hit Ratio that surpasses the

41



state-of-the-art heuristic policies, even within the limited range of this relatively

short trace.

5.4 Workloads
Table 5.3: Summary of the traces used in our evaluation.

Wiki
2018

Wiki
2019

Cloud
Physics

EU

Total Requests 84 mil-
lion

90 mil-
lion

27 mil-
lion

100 mil-
lion

Unique Objects Requested 7 million 11 mil-
lion

8 million 41 mil-
lion

Total Bytes Requested 2.6 TB 3.4 TB 360 GB 100 TB
Unique Bytes Requested 0.75 TB 1 TB 86 GB 38 TB

Request Obj Size Mean 34 KB 41 KB 14 KB 1 MB
Max 674 MB 558 MB 1 MB 7 MB

Our evaluation uses a set of four distinct traces to create a diverse testing en-

vironment for the HR-Cache system. This includes two public CDN production

traces from Wikipedia for the years 2018 and 2019 [10], a public trace from Cloud-

Physics [45], and a synthetic trace generated using the JEDI tool in [46, 47]. The

selection of these traces aims to represent the performance of HR-Cache across

a wide spectrum of real-world and synthetic workloads. Detailed descriptions of

each trace source are as follows:

1. Wikipedia Traces (2018 and 2019): These traces are sourced from Con-

tent Delivery Network nodes in a metropolitan area in 2018 and 2019, re-

spectively. They mainly consist of web and multimedia content, including

images and videos, catering to Wikipedia pages. To reflect the typical en-

vironment of edge caches, our evaluations on these traces are conducted

42



with cache sizes of 16 GB, 32 GB, 64 GB, and 128 GB, aligning with the

characteristics of smaller cache sizes often found in edge caches [8].

2. CloudPhysics Trace: A Block I/O trace from [45], capturing the activity

of VMware virtual disks. This trace introduces a more diverse workload for

our analysis, extending beyond the typical CDN scenarios. In our analysis of

this trace, we chose cache sizes of 1 GB, 4 GB, 8 GB, and 16 GB, reflecting

common configurations in virtual machine environments.

3. EU Synthetic Trace: This trace is generated using the JEDI tool [46]

which produces traces that have similar caching properties and object-level

properties as original production traces. We use the “eu” traffic class which is

tailored to replicate the traffic patterns observed in an Akamai’s production

CDN, specifically those serving content related to social media. For this

trace, we use cache sizes of 256 GB, 512 GB, 1 TB, and 2 TB. This decision

is based on the trace’s large working set size, where smaller cache sizes would

not be effective or meaningful for performance analysis.

Table 5.3 summarizes key properties of the four traces.

5.5 State-of-the-art algorithms

In our evaluation, HR-Cache is compared with eleven state-of-the-art caching al-

gorithms: LRB, LRU, LRU-4, S4LRU, GDSF, LFUDA, AdaptSize, Hyperbolic,

LHD, LeCaR, and UCB. To enhance readability, we only present the results for

the six best-performing algorithms compared to LRU, but give an overview of

each algorithm here. Detailed results for all the algorithms are available in the

43



supplementary chapter A, providing a comprehensive comparison. These six best-

performing algorithms can be divided into two categories: 1) learning-based al-

gorithms, which include LRB [10] (covered in section 2.1), LeCaR [48], and UCB

[49]; and 2) heuristics-based algorithms, comprising LRU-4 [50], LFUDA [51], and

S4LRU[52].

LRU (Least Recently Used): LRU is a widely used caching policy that

evicts the least recently used items first. In an LRU cache, when a new item

needs to be inserted and the cache is full, the item that hasn’t been accessed for

the longest time is removed to make space. This approach is based on the idea

that items used recently are more likely to be needed again soon. LRU is popular

due to its simplicity and reasonable assumption about access patterns in many

scenarios, but it may not always be the most efficient choice, especially in systems

where access patterns change rapidly or are not well-predicted by recent usage.

LRU-K: The LRU-K algorithm is an extension of the traditional Least Re-

cently Used (LRU) caching strategy [50]. In LRU-K:

• “K” refers to a predefined number that indicates how many past references

of each object the algorithm keeps track of.

• When an object is accessed, the time of access is recorded. The algorithm

maintains the last K timestamps of accesses for each object.

• The object with the oldest K-th reference is the one replaced when a new

object needs to be loaded into the cache and there’s no more space.

44



This allows LRU-K to discriminates between objects with different levels of refer-

ence frequency. In this comparison, we choose K=4 and as such will refer to the

algorithm as LRU-4.

S4LRU (Segmented LRU): S4LRU algorithm is an advanced variation of

the traditional LRU caching mechanism, designed to improve cache hit rates by

segmenting the cache into four distinct queues, numbered 0 to 3 [52]. This struc-

ture offers a more dynamic approach to handling cache items based on their access

patterns. Upon a cache miss, when a requested item is not in the cache, S4LRU

places this item at the start of queue 0. This is the entry level for new or less

recently accessed items. If an item is accessed while it’s already in the cache (a

cache hit), it gets promoted to the beginning of the next higher-level queue. For

items in queue 3, the highest level, a cache hit simply moves them to the front of

the same queue. Each queue is allocated a fixed portion, precisely one-fourth, of

the total cache size. To maintain this allocation, if a queue exceeds its capacity

due to a new addition, the item at the end of that queue is demoted to the head

of the immediately lower queue. The eviction process begins at queue 0, where

items at the tail are removed from the cache when space needs to be freed.

GDSF (Greedy-Dual Size Frequency): GDSF is a caching policy that

extends Greedy-Dual by considering both the size and frequency of items. In

GDSF, each item in the cache is assigned a priority value based on a combination

of its size, the cost of fetching it (e.g., from a disk), and the frequency of its

access. The priority of an item increases with each access, reflecting its frequency

of use. Additionally, smaller items are given higher priority since they consume

less cache space, allowing more items to be stored in the cache. When the cache

45



is full and a new item needs to be added, the algorithm evicts the item with

the lowest priority value to make space. This approach ensures that frequently

accessed items, especially those that are smaller and hence more efficient to store,

are retained in the cache for longer periods. On the other hand, larger items or

those that are nfrequently accessed are more likely to be evicted.

LFUDA (Least Frequently Used with Dynamic Aging): The Least

Frequently Used with Dynamic Aging (LFUDA) algorithm is an enhancement of

the Least Frequently Used (LFU) caching strategy. It addresses a key flaw of LFU

- the preference for older, possibly outdated data. LFUDA operates by counting

each object’s access frequency, similar to LFU, but introduces a dynamic aging

mechanism that gradually reduces the access count of each object over time. This

aging effect makes older objects more susceptible to eviction, even if they were

frequently accessed in the past. As a result, LFUDA adapts more effectively to

changing access patterns, ensuring that the cache remains aligned with the most

current and relevant data. This approach balances the simplicity of LFU with the

need to accommodate temporal shifts in data access trends.

AdaptSize: AdaptSize[53] is a caching system that reduces the probability

of caching large objects, so as to increase the hit rate of smaller, more frequently

accessed ones by using a Markov cache model for size-aware cache admission policy.

Hyperbolic: The Hyperbolic caching algorithm is a variant of caching policy

designed to improve upon traditional approaches like Least Recently Used (LRU)

and Least Frequently Used (LFU). It selects items for eviction based on a combi-

nation of how frequently and how recently they were accessed, using a hyperbolic

46



function.

LHD: LHD [54] operates by forecasting the hit density of each object, which is

the expected number of hits per unit of space it consumes. It achieves this through

conditional probability modeling, which assesses objects’ potential contribution to

the overall cache hit rate. By continuously monitoring objects and their charac-

teristics (such as age, frequency, application id, and size), LHD can dynamically

adjust its eviction strategy to align with evolving application workloads.

LeCaR (Learning Caching Replacement): LeCaR [48] is a learning-based

caching policy that combines the benefits of both recency (LRU) and frequency

(LFU) based approaches. It uses reinforcement online learning with regret mini-

mization to adaptively adjust the importance of recency versus frequency under

varying access patterns, aiming to optimize cache performance dynamically.

UCB: UCB [49] is a learning-based algorithm that applies the Upper Confi-

dence Bound algorithm from reinforcement learning for cache management.

Experimental Setup

All experiments are run on a Google Cloud server with 24 E2-v CPUs (12 shared

physical cores) and 64 GB of RAM. Unless specified otherwise, the reported results

for HR-Cache are based on the settings that HR-Cache operates in batch-mode

inference with a batch size of 128. We also set the frequency decay factor to 0.9

for the decayed frequency feature.

47



We note that the LRB algorithm was run using its default window parameter.

The longer duration of this default memory window, in comparison to the lengths

of our traces and the sizes of our caches, might have a bearing on its performance.

However, any such influence is expected to be advantageous, which contributes to

a balanced comparison in our study.

In all our experiments, the initial training window, during which HR-Cache

reverts to LRU, is considered a warm-up phase. We report the metrics for HR-

Cache and other algorithms after this period. Notably, LRB starts its training

ahead of our framework, and thus, this warm-up phase provides enough time for

its training phase to start.

5.6 Main Results

We compare HR-Cache with the caching algorithms detailed in Section 5.5, across

various cache sizes. Our primary metric for comparison is the percentage of traffic

offload, which indicates the reduction in traffic from downloading content via

backhaul links in comparison to LRU. Figure 5.3 shows the reduction in wide-

area network (WAN) traffic for each algorithm, relative to LRU, across different

cache sizes and the four traces. To ensure a comprehensive analysis, we have

also included a comparison of the byte miss ratios for HR-Cache and the best-

performing policy for each trace in Figure 5.4.

HR-Cache consistently outperforms existing state-of-the-art algorithms, secur-

ing the lowest byte miss ratios across various combinations of traces and cache

48



(a) Wikipedia 2018 (b) CloudPhysics

(c) EU Synthetic (d) Wikipedia 2019

Figure 5.3: WAN Traffic Reduction Compared to LRU Across Vari-
ous Cache Sizes for HR-Cache and Seven Leading Algorithms. HR-
Cache Consistently Achieves 2.2–14.6% Greater WAN Traffic Sav-
ings than LRU, Outperforming the SOA Alternatives.

49



sizes. The sole exception is observed with the EU Synthetic, size 2048, where HR-

Cache achieves performance equivalent to that of LeCar. On average, HR-Cache

reduces WAN traffic by over 9.7% compared to LRU, with reductions ranging from

2.2–14.6%. Its robust performance is evident across all traces, unlike other algo-

rithms that lack consistent improvements across varying traces and cache sizes.

For instance, LRU-4 improves performance over LRU in 3 of the workloads,

but completely underperforms in the EU traces, resulting in a significant 16-24%

increase in traffic over LRU (not depicted in the plot due to being below the y-

axis). On the other hand, UCB generally underperforms compared to the other

algorithms, with a notable exception in CloudPhysics at 16 GB, where it closely

rivals HR-Cache and LRB. Shifting focus to LeCaR and LFUDA, these algorithms

consistently outperform LRU, yet they do not manage to surpass the effectiveness

of other top-performing policies. LRB, on the other hand, exhibits strong results

on the Wiki traces, however, it performs the same or falls short in comparison

to HR-Cache even where it performs best. Moreover, LRB is outperformed by

heuristic algorithms in an instance of CloudPhysics and EU Synthetic and under-

goes a significant decrease in effectiveness in the EU Synthetic trace, particularly

as cache sizes increase.

Furthermore, it is important to note that the pattern of WAN traffic reduction

achieved by HR-Cache does not consistently correlate with cache capacity. For

instance, in the EU Synthetic trace, we observe that the traffic reduction effec-

tively doubles when moving from 256 GB to 1 TB. Conversely, in CloudPhysics,

HR-Cache’s reduction over LRU generally shows an increasing trend, yet there

are instances where the improvement trend inversely declines. This variability

50



suggests that the traces used in our study encompass a diverse array of request

patterns, influencing the performance dynamics of HR-Cache differently across

scenarios.

Overall, these results suggest that heuristic-based algorithms excel with specific

patterns but falter with others. A similar trend is observed among the learning-

based algorithms we evaluated. UCB generally underperforms across the board,

and LeCaR struggles to match the performance of state-of-the-art alternatives.

LRB, although demonstrating strengths in certain scenarios, does not consistently

show improvement, underscoring the variability in its efficacy. Figure 5.4 demon-

strates this observation as well, showing that HR-Cache consistently outperforms

the best performing policy across traces, whereas no single policy consistently

emerges as the best across all scenarios.

5.7 Prediction Overhead Optimization

In this section, we analyze the additional prediction overhead introduced by HR-

Cache in comparison with the state-of-the-art LRB algorithm. To understand the

source of this overhead in both LRB and HR-Cache, we examine this overhead for

the Wiki 2018 trace.

LRB incurs prediction overhead by running predictions on 64 samples for each

eviction event. In contrast, HR-Cache requires a prediction for each incoming

request to determine cache-friendliness. However, HR-Cache’s batch mode sig-

nificantly reduces this requirement by enabling inference on every 128 requests,

rather than on each individual request. As both frameworks utilize the GBDT

51



(a) EU Synthetic (b) Wiki 2018

(c) Wiki 2019 (d) CloudPhysics

Figure 5.4: Comparison of Byte Miss Ratios for HR-Cache, the
Best Performing Policy, and LRU

model, we measure the inference time for batches of 64 (LRB’s eviction candidate

count) and 128 (HR-Cache’s inference batch size) inputs, respectively. The results

of these measurements is found in Table 5.4.

Given that LRB is required to run predictions with every eviction event, its

52



Prediction batch Prediction time (µs)
LRB 64 183

HR-Cache 128 220

Table 5.4: Comparison of Prediction Batch Sizes and Prediction
Times for LRB and HR-Cache Algorithms

prediction overhead is directly tied to the object miss ratio. For our analysis, we

assume the best-case scenario for LRB, where only one object needs to be evicted

per cache miss.

Under the Wikipedia 2018 workload for cache sizes of 64 GB and 128 GB,

LRB is required to run predictions for 18% and 13% of requests, respectively. In

contrast, HR-Cache with a batch size of 128, effectively runs predictions for only

1/128 of requests. Taking this and the measured inference times into account,

this translates to a prediction overhead reduction by factors of 19.2x and 13.8x

for cache sizes of 64 GB and 128 GB, respectively, when compared to LRB.

Table 5.5: Prediction Overhead Reduction For Wiki 2018

Alg. Miss Ratio Pred Time (µs/req) Reduction Factor
64 GB 128 GB 64 GB 128 GB 64 GB 128 GB

LRB 0.18 0.13 32.94 23.8 - -
HR-Cache - - 1.72 1.72 19.2x 13.8x

Another aspect of overhead comes from the process of feature building. HR-

Cache constructs one feature per request, while LRB, in contrast, needs to build

64 features on each object miss. This difference results in a significant reduction

of overhead for HR-Cache. Specifically, under the Wiki 2018 workload for cache

sizes of 64 GB and 128 GB, HR-Cache achieves a reduction in feature-building

overhead by factors of 11.5x and 8.3x, respectively, compared to LRB.

53



To illustrate HR-Cache’s computational burden, consider the Wiki 2018 trace

with a cache size of 64: replaying 84 million requests, conducting frequent training

and inference, and updating our cache based on these predictions, takes approxi-

mately 13 minutes, which is more than acceptable given the inter-arrival request

rates for objects.

5.8 Ablation Study

In Section 4.2, we discussed how hit or miss outcomes determined by hazard order-

ing may not directly correspond to cache decisions. This is because Hazard Rate

Ordering (HRO) assumes objects with the highest hazard rates are always pre-

fetched and available in the cache whenever a request occurs at time t. Therefore,

if a request for an object at time t is a hit, we previously classify it as cache-friendly

in its last request.

We also noted that modeling the request process as a Poisson process is a

simplification, even though it offers a less complex method for calculating hazard

rates. Under this process, the hazard rate remains constant. In our study, we

conduct an ablation analysis on three of the traces, where we remove the look-

back option in one scenario. In another, we operate HR-Cache under the Poisson

assumption, as opposed to using non-parametric kernel hazard estimation.

The results from our ablation analysis, presented in Figure 5.5, offer valuable

insights into the effectiveness of our method. Notably, the inclusion of the look-

back option in HR-Cache significantly impacts its performance across all traces.

54



This finding underscores the validity of our initial assumption regarding the impor-

tance of translating the pre-fetching nature of the HRO rule into cache decisions.

It also affirms the soundness of our approach in HR-Cache for labeling requests,

demonstrating the method’s efficacy in enhancing cache performance across vari-

ous scenarios.

When operating under the Poisson assumption, we observe a notable reduction

in performance for the Wiki 2018 trace, while the impact on the CloudPhysics and

EU traces was comparatively minimal. This variance in outcomes underscores the

hypothesis that the Poisson model’s assumptions may not align seamlessly with

the diverse realities of real-world trace data. This highlights the importance of our

approach in HR-Cache, which opts for a more nuanced and adaptable hazard rate

estimation method that is able to handle a broader range of caching scenarios.

Figure 5.5: Improvement of HR-Cache over the SOA under Abla-
tion Study

55



Chapter 6

Conclusion

This thesis has introduced and validated HR-Cache, a learning-based caching pol-

icy that synergizes non-parametric hazard rate estimation with supervised learning

to enhance cache decision-making. Rooted in the hazard rate upper bound prin-

ciple, HR-Cache has demonstrated its capability to surpass traditional heuristic

methods and contemporary learning-based approaches, given the limited cache

capacity and workload varying workload characteristics of edge caching environ-

ments. The cornerstone of HR-Cache is its ability to learn from hazard rate or-

dering decisions, enabling it to efficiently discern cache-averse objects and allocate

them for eviction, thereby optimizing cache usage. This framework is composed

of two integral components: first, the reconstruction of hazard rate ordering for a

specific window of requests through kernel hazard estimation; second, the imple-

mentation of a decision tree classifier adept at predicting the cache-friendliness of

incoming requests.

Our comprehensive evaluation of HR-Cache employed a range of real-world

data traces, allowing us to rigorously compare its performance against a variety

56



of leading caching strategies. The results of these evaluations were clear and com-

pelling: HR-Cache not only markedly improved the byte hit rate over traditional

LRU methods but also consistently outperformed a broad spectrum of state-of-

the-art policies. Notably, it achieved these superior results while maintaining a

minimal computational footprint, particularly when compared to the state-of-the-

art learning-based caching policy.

6.1 Summary

Our extensive experiments using a diverse array of real-world and synthetic traces

have underscored HR-Cache’s adaptability and efficiency. The development of a

C++ trace-driven framework has enabled accurate assessments of the HR-Cache

performance under various scenarios. Moreover, the introduction of efficient re-

source utilization strategies, such as batched predictions, has been instrumental

in reducing computational overheads, making HR-Cache viable for high-demand

applications.

We have gained valuable insights into the framework’s operational dynamics

through an in-depth ablation study. These findings have confirmed the effective-

ness of our approach in translating the pre-fetching nature of the Hazard Rate

Ordering rule into practical cache decisions, thereby enhancing the overall perfor-

mance of the caching system.

57



6.2 Future Work

We envision several promising directions for advancing the capabilities of HR-

Cache. Two particularly compelling avenues for future exploration include de-

ploying HR-Cache in distributed caching environments and integrating it into es-

tablished production cache systems. These developments would not only broaden

the scope of HR-Cache’s applicability but also offer valuable insights into its per-

formance and adaptability in more complex and demanding real-world scenarios.

6.2.1 Distributed HR-Cache

This work introduced HR-Cache, primarily focused on a single cache scenario.

To explore its application in distributed environments, we identify two potential

extensions:

Federated Learning Integration Federated learning, a method rapidly gain-

ing traction, particularly in edge computing, offers an intriguing avenue for extend-

ing HR-Cache. This approach involves collaboratively learning a shared prediction

model while keeping all the training data on the individual caches, aligning per-

fectly with the data privacy and locality principles of edge computing [55]. By

adopting federated learning, each cache node can contribute to and benefit from a

more comprehensive and diverse dataset, effectively overcoming the limitations of

single-cache data availability. This collective learning process would enable the de-

velopment of a global model leading to potentially more accurate and generalized

cache decision-making.

58



However, this method isn’t without its challenges, particularly the issue of non-

IID (independent and identically distributed) data. In federated learning, data

across different nodes is often not identically distributed, leading to variability in

workload patterns [56]. This non-IID nature of data can result in a globally trained

model that might not perform optimally for local scenarios, leading to subpar

caching decisions. This discrepancy could diminish the benefits of a federated

approach, necessitating a careful balance between global model training and local

cache characteristics. Despite these challenges, federated learning integration for

HR-Cache represents a fertile ground for future research which can potentially

enhance the distributed caching strategies in edge environments.

Hierarchical Cache Application Another intriguing direction for future work

involves exploring the application of the Hazard Rate Ordering (HRO) method

within a hierarchical cache architecture such as those considered by [57, 58]. In

such a setting, a multi-level cache, such as a two-level hierarchy, is considered.

Implementing a cache replacement algorithm optimized for an isolated cache in

this structure then might not yield optimal overall performance.

The adaptation of HR-Cache for a multi-level system would involve extending

the principles of learning-based cache management to each level of the hierarchy.

This process necessitates a thorough investigation into how the HRO method

can be effectively applied in a network of caches. Such an exploration would

not only include the development of individual cache models for each level but

also a comprehensive strategy that optimizes cache utilization across the entire

hierarchy. Furthermore, the interplay between cache levels in a hierarchical system

could lead to complex dynamics that require advanced modeling techniques and

59



careful consideration of inter-cache dependencies. Ultimately, the aim would be

to create a robust, scalable caching framework that leverages the strengths of HR-

Cache in a hierarchical setting. By addressing the nuances of cache networks, this

extension has the potential to significantly enhance the efficiency and effectiveness

of caching strategies, particularly in distributed and edge computing environments

where hierarchical caching is prevalent.

These potential extensions of HR-Cache highlight the scalability and adapt-

ability of the framework, opening avenues for enhancing caching strategies in dis-

tributed and edge computing scenarios.

6.2.2 Integration into Production Systems

The practical application and integration of HR-Cache into established caching

systems, such as Redis [59], Memcached [60], Varnish [61], or Apache Traffic Server

[62], represent another significant avenue for future work. This integration would

enable a comprehensive assessment of HR-Cache in real-world environments, and

would provide insights into its performance and scalability under actual opera-

tional conditions.

Integrating HR-Cache into these widely-used systems would involve some key

steps:

• Adaptation and Compatibility: Modifying HR-Cache to ensure com-

patibility with the architecture and data structures of these systems. This

would involve aligning HR-Cache’s interfaces and data handling methods

with those of the target systems to ensure seamless integration.

60



• Latency and Overhead Analysis: A crucial aspect of the integration

process is assessing the latency and memory overhead introduced by HR-

Cache. This analysis would provide valuable insights into the trade-offs

between improved caching performance and resource consumption, which

is critical for systems where low latency and efficient memory usage are

paramount such as edge environments.

• Scalability Assessment: Understanding how HR-Cache scales with in-

creasing data volumes and user requests is essential. This involves testing

the system under high-load scenarios to ensure that HR-Cache maintains its

efficiency and does not become a bottleneck.

The ultimate goal of this integration is to demonstrate the feasibility and ben-

efits of deploying HR-Cache in real-world caching scenarios. This would allow us

to validate the effectiveness of HR-Cache in a production setting and also pave

the way for its wider adoption in industry-standard caching solutions.

61



Bibliography

[1] F. Yang, S. Wang, J. Li, Z. Liu, and Q. Sun, “An overview of internet of vehicles,”

China communications, vol. 11, no. 10, pp. 1–15, 2014.

[2] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-

access edge computing: A survey of the emerging 5g network edge cloud architecture

and orchestration,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3,

pp. 1657–1681, 2017.

[3] T. Taleb, P. A. Frangoudis, I. Benkacem, and A. Ksentini, “Cdn slicing over a

multi-domain edge cloud,” IEEE Transactions on Mobile Computing, vol. 19, no. 9,

pp. 2010–2027, 2019.

[4] T. Barnett, S. Jain, U. Andra, and T. Khurana, “Cisco visual networking index

(vni) complete forecast update, 2017–2022,” Americas/EMEAR Cisco Knowledge

Network (CKN) Presentation, pp. 1–30, 2018.

[5] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: a platform for

high-performance internet applications,” ACM SIGOPS Operating Systems Review,

vol. 44, no. 3, pp. 2–19, 2010.

[6] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,

M. Paleczny, D. Peek, P. Saab, et al., “Scaling memcache at facebook,” in 10th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

13), pp. 385–398, 2013.

62



[7] W. Reese, “Nginx: the high-performance web server and reverse proxy,” Linux

Journal, vol. 2008, no. 173, p. 2, 2008.

[8] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the wireless edge: de-

sign aspects, challenges, and future directions,” IEEE Communications Magazine,

vol. 54, no. 9, pp. 22–28, 2016.

[9] M. S. ElBamby, M. Bennis, W. Saad, and M. Latva-Aho, “Content-aware user clus-

tering and caching in wireless small cell networks,” in 2014 11th International sym-

posium on wireless communications systems (ISWCS), pp. 945–949, IEEE, 2014.

[10] Z. Song, D. S. Berger, K. Li, A. Shaikh, W. Lloyd, S. Ghorbani, C. Kim, A. Akella,

A. Krishnamurthy, E. Witchel, et al., “Learning relaxed belady for content distribu-

tion network caching,” in 17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 20), pp. 529–544, 2020.

[11] K. Mokhtarian and H.-A. Jacobsen, “Caching in video cdns: Building strong lines

of defense,” in Proceedings of the ninth European conference on computer systems,

pp. 1–13, 2014.

[12] N. K. Panigrahy, P. Nain, G. Neglia, and D. Towsley, “A new upper bound on

cache hit probability for non-anticipative caching policies,” ACM Transactions on

Modeling and Performance Evaluation of Computing Systems, vol. 7, no. 2-4, pp. 1–

24, 2022.

[13] D. S. Berger, “Towards lightweight and robust machine learning for cdn caching,”

in Proceedings of the 17th ACM Workshop on Hot Topics in Networks, pp. 134–140,

2018.

[14] L. A. Belady, “A study of replacement algorithms for a virtual-storage computer,”

IBM Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

63



[15] A. Jain and C. Lin, “Back to the future: Leveraging belady’s algorithm for improved

cache replacement,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,

pp. 78–89, 2016.

[16] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying deep learning to the cache

replacement problem,” in Proceedings of the 52nd Annual IEEE/ACM International

Symposium on Microarchitecture, pp. 413–425, 2019.

[17] E. Liu, M. Hashemi, K. Swersky, P. Ranganathan, and J. Ahn, “An imitation

learning approach for cache replacement,” in International Conference on Machine

Learning, pp. 6237–6247, PMLR, 2020.

[18] D. S. Berger, N. Beckmann, and M. Harchol-Balter, “Practical bounds on optimal

caching with variable object sizes,” Proceedings of the ACM on Measurement and

Analysis of Computing Systems, vol. 2, no. 2, pp. 1–38, 2018.

[19] G. Yan, J. Li, and D. Towsley, “Learning from optimal caching for content deliv-

ery,” in Proceedings of the 17th International Conference on emerging Networking

EXperiments and Technologies, pp. 344–358, 2021.

[20] X. Hu, E. Ramadan, W. Ye, F. Tian, and Z.-L. Zhang, “Raven: belady-guided,

predictive (deep) learning for in-memory and content caching,” in Proceedings of

the 18th International Conference on emerging Networking EXperiments and Tech-

nologies, pp. 72–90, 2022.

[21] A. V. Aho, P. J. Denning, and J. D. Ullman, “Principles of optimal page replace-

ment,” Journal of the ACM (JACM), vol. 18, no. 1, pp. 80–93, 1971.

[22] N. K. Panigrahy, “Resource allocation in distributed service networks,” 2021.

[23] D. J. Daley, Introduction to the Theory of Point Processes: Elementary Theory and

Methods. Springer, 2014.

64



[24] W. Ali, S. M. Shamsuddin, and A. S. Ismail, “Intelligent web proxy caching ap-

proaches based on machine learning techniques,” Decision Support Systems, vol. 53,

no. 3, pp. 565–579, 2012.

[25] P. Blasco and D. Gündüz, “Learning-based optimization of cache content in a small

cell base station,” in 2014 IEEE international conference on communications (ICC),

pp. 1897–1903, IEEE, 2014.

[26] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep reinforcement learning-based

framework for content caching,” in 2018 52nd Annual Conference on Information

Sciences and Systems (CISS), pp. 1–6, IEEE, 2018.

[27] S. Li, J. Xu, M. Van Der Schaar, and W. Li, “Popularity-driven content caching,” in

IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Com-

puter Communications, pp. 1–9, IEEE, 2016.

[28] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for content

distribution networks,” in 2010 Proceedings IEEE INFOCOM, pp. 1–9, IEEE, 2010.

[29] K. Poularakis and L. Tassiulas, “On the complexity of optimal content placement

in hierarchical caching networks,” IEEE Transactions on Communications, vol. 64,

no. 5, pp. 2092–2103, 2016.

[30] S. S. Tanzil, W. Hoiles, and V. Krishnamurthy, “Adaptive scheme for caching

youtube content in a cellular network: Machine learning approach,” Ieee Access,

vol. 5, pp. 5870–5881, 2017.

[31] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and scalable caching

for 5g using reinforcement learning of space-time popularities,” IEEE Journal of

Selected Topics in Signal Processing, vol. 12, no. 1, pp. 180–190, 2017.

65



[32] A. Sadeghi, G. Wang, and G. B. Giannakis, “Deep reinforcement learning for adap-

tive caching in hierarchical content delivery networks,” IEEE Transactions on Cog-

nitive Communications and Networking, vol. 5, no. 4, pp. 1024–1033, 2019.

[33] X. Wang, C. Wang, X. Li, V. C. Leung, and T. Taleb, “Federated deep reinforce-

ment learning for internet of things with decentralized cooperative edge caching,”

IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9441–9455, 2020.

[34] S. Tuli and G. Casale, “Optimizing the performance of fog computing environments

using ai and co-simulation,” in Companion of the 2022 ACM/SPEC International

Conference on Performance Engineering, pp. 25–28, 2022.

[35] G. Garbi, E. Incerto, and M. Tribastone, “Learning queuing networks by recurrent

neural networks,” in Proceedings of the ACM/SPEC International Conference on

Performance Engineering, pp. 56–66, 2020.

[36] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska, “Bao: Learn-

ing to steer query optimizers,” arXiv preprint arXiv:2004.03814, 2020.

[37] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska, “Learning multi-dimensional

indexes,” in Proceedings of the 2020 ACM SIGMOD international conference on

management of data, pp. 985–1000, 2020.

[38] J. Gao, “Machine learning applications for data center optimization,” 2014.

[39] A. Jindal, S. Qiao, R. Sen, and H. Patel, “Microlearner: A fine-grained learning

optimizer for big data workloads at microsoft,” in 2021 IEEE 37th International

Conference on Data Engineering (ICDE), pp. 2423–2434, IEEE, 2021.

[40] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust network traffic clas-

sification,” IEEE/ACM transactions on networking, vol. 23, no. 4, pp. 1257–1270,

2014.

66



[41] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource management with

deep reinforcement learning,” in Proceedings of the 15th ACM workshop on hot

topics in networks, pp. 50–56, 2016.

[42] H.-G. Muller and J.-L. Wang, “Hazard rate estimation under random censoring

with varying kernels and bandwidths,” Biometrics, pp. 61–76, 1994.

[43] J.-L. Wang et al., “Smoothing hazard rates,” Encyclopedia of biostatistics, vol. 7,

pp. 4986–4997, 2005.

[44] V. Kirilin, A. Sundarrajan, S. Gorinsky, and R. K. Sitaraman, “Rl-cache: Learning-

based cache admission for content delivery,” in Proceedings of the 2019 Workshop

on Network Meets AI & ML, pp. 57–63, 2019.

[45] C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ahmad, “Efficient {MRC}

construction with {SHARDS},” in 13th USENIX Conference on File and Storage

Technologies (FAST 15), pp. 95–110, 2015.

[46] A. Sabnis and R. K. Sitaraman, “Jedi: model-driven trace generation for cache

simulations,” in Proceedings of the 22nd ACM Internet Measurement Conference,

pp. 679–693, 2022.

[47] A. Sabnis and R. K. Sitaraman, “Tragen: a synthetic trace generator for realistic

cache simulations,” in Proceedings of the 21st ACM Internet Measurement Confer-

ence, pp. 366–379, 2021.

[48] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu, R. Ran-

gaswami, M. Zhao, and G. Narasimhan, “Driving cache replacement with {ML-

based}{LeCaR},” in 10th USENIX Workshop on Hot Topics in Storage and File

Systems (HotStorage 18), 2018.

67



[49] R. Costa and J. Pazos, “Mlcache: A multi-armed bandit policy for an operating

system page cache,” tech. rep., Technical report, University of British Columbia,

2017.

[50] E. J. O’neil, P. E. O’neil, and G. Weikum, “The lru-k page replacement algorithm

for database disk buffering,” Acm Sigmod Record, vol. 22, no. 2, pp. 297–306, 1993.

[51] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evaluating content

management techniques for web proxy caches,” ACM SIGMETRICS Performance

Evaluation Review, vol. 27, no. 4, pp. 3–11, 2000.

[52] Q. Huang, K. Birman, R. Van Renesse, W. Lloyd, S. Kumar, and H. C. Li, “An

analysis of facebook photo caching,” in Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, pp. 167–181, 2013.

[53] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “{AdaptSize}: Orchestrat-

ing the hot object memory cache in a content delivery network,” in 14th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 17), pp. 483–

498, 2017.

[54] N. Beckmann, H. Chen, and A. Cidon, “{LHD}: Improving cache hit rate by

maximizing hit density,” in 15th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 18), pp. 389–403, 2018.

[55] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge ai: Intelligen-

tizing mobile edge computing, caching and communication by federated learning,”

Ieee Network, vol. 33, no. 5, pp. 156–165, 2019.

[56] H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-iid data: A survey,”

Neurocomputing, vol. 465, pp. 371–390, 2021.

68



[57] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems: Modeling, de-

sign and experimental results,” IEEE journal on Selected Areas in Communications,

vol. 20, no. 7, pp. 1305–1314, 2002.

[58] X. Li, X. Wang, P.-J. Wan, Z. Han, and V. C. Leung, “Hierarchical edge caching

in device-to-device aided mobile networks: Modeling, optimization, and design,”

IEEE Journal on Selected Areas in Communications, vol. 36, no. 8, pp. 1768–1785,

2018.

[59] J. Carlson, Redis in action. Simon and Schuster, 2013.

[60] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-ur Rahman, N. S.

Islam, X. Ouyang, H. Wang, S. Sur, et al., “Memcached design on high perfor-

mance rdma capable interconnects,” in 2011 International Conference on Parallel

Processing, pp. 743–752, IEEE, 2011.

[61] P.-H. Kamp, “Notes from the architect.” Available at: https://varnish-cache.

org/docs/trunk/phk/notes.html, 2006. Accessed: 28/11/2023.

[62] Z. Liu, N. Niclausse, and C. Jalpa-Villanueva, “Traffic model and performance

evaluation of web servers,” Performance Evaluation, vol. 46, no. 2-3, pp. 77–100,

2001.

69

https://varnish-cache.org/docs/trunk/phk/notes.html
https://varnish-cache.org/docs/trunk/phk/notes.html


Appendix A

Chapter 5 Supplement

Table A1.1: Performance Comparison on Wikipedia 2018 Trace

16GB 32GB 64GB 128GB
HR-Cache (Ours) 0.64157 0.5665 0.4810 0.4045
LRB (SOA) 0.6553 0.5923 0.5205 0.4209
LRU 0.7485 0.6631 0.5633 0.4554
LRU-4 0.6946 0.6120 0.5205 0.4284
S4LRU 0.7163 0.6387 0.5500 0.4613
GDSF 0.7496 0.6922 0.6131 0.4950
LFUDA 0.7074 0.6195 0.5241 0.4274
AdaptSize 0.7773 0.7097 0.6234 0.6056
Hyperbolic 0.7750 0.7006 0.6103 0.5071
LHD 0.7596 0.6987 0.6212 0.5239
LeCaR 0.7197 0.6347 0.5398 0.4429
UCB 0.7596 0.6764 0.5766 0.4637

70



Table A1.2: Performance Comparison on Wikipedia 2019 Trace

16GB 32GB 64GB 128GB
HR-Cache (Ours) 0.6438 0.5747 0.4924 0.4156
LRB (SOA) 0.6442 0.5777 0.5114 0.4304
LRU 0.7407 0.6613 0.5700 0.4714
LRU-4 0.6852 0.6067 0.5231 0.4399
S4LRU 0.7054 0.6318 0.5498 0.4665
GDSF 0.7478 0.6730 0.5929 0.4999
LFUDA 0.6942 0.6146 0.5281 0.4405
AdaptSize 0.7851 0.7147 0.6228 0.5708
Hyperbolic 0.7697 0.6991 0.6159 0.5230
LHD 0.7671 0.7036 0.6286 0.5372
LeCaR 0.7142 0.6333 0.5446 0.4532
UCB 0.7783 0.6928 0.5912 0.4853

Table A1.3: Performance Comparison on CloudPhysics Trace

1GB 4GB 8GB 16GB
HR-Cache (Ours) 0.7317 0.6248 0.6201 0.5181
LRB (SOA) 0.7337 0.6425 0.6259 0.5294
LRU 0.7681 0.6738 0.6768 0.6013
LRU-4 0.7510 0.6278 0.6312 0.5664
S4LRU 0.7523 0.6605 0.6277 0.5678
GDSF 0.8154 0.7195 0.7025 0.6540
LFUDA 0.7513 0.6575 0.6531 0.5689
AdaptSize 0.9472 0.9093 0.9078 0.8143
Hyperbolic 0.7826 0.6993 0.6851 0.6365
LHD 0.8362 0.7956 0.7858 0.7262
LeCaR 0.7505 0.6419 0.6510 0.5764
UCB 0.7864 0.6748 0.6411 0.5346

71



Table A1.4: Performance Comparison on EU Trace

256GB 512GB 1TB 2TB
HR-Cache (Ours) 0.7139 0.6510 0.5791 0.5123
LRB (SOA) 0.7191 0.6814 0.6358 0.5737
LRU 0.7302 0.6778 0.6131 0.5254
LRU-4 0.9063 0.8430 0.7415 0.6087
S4LRU 0.7169 0.6571 0.5883 0.5166
GDSF 0.7516 0.6983 0.6310 0.5531
LFUDA 0.7178 0.6603 0.5960 0.5222
AdaptSize 0.9200 0.8540 0.8091 0.7732
Hyperbolic 0.7440 0.6984 0.6379 0.5663
LHD 0.7903 0.7353 0.6724 0.5823
LeCaR 0.7208 0.6622 0.5914 0.5110
UCB 0.9887 0.9792 0.9660 0.9377

72


	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Declaration of Authorship
	Introduction
	Overview
	Motivation
	Reducing WAN Traffic
	Limitations of Existing Learning-based Methods

	Thesis Contributions
	Thesis Organization

	Background
	Limitations of Existing Methods
	Hazard Rate-Based Upper Bound
	Hazard Rate Function
	Gradient Boosted Decision Trees
	Fundamental Mechanics of GBDT
	Algorithmic Workflow
	Applications and Advantages


	Related Work
	Learning-based Caching
	Distributed Caching Systems
	Machine Learning for System Efficiency and Improvement Beyond Caching

	HR-Cache: Intelligent Caching
	Hazard Rate Estimation
	Learning From HRO
	Design of HR-Cache
	Training Data
	ML Architecture
	The HR-Cache Policy

	Optimizations
	Batched Predictions


	Experimental Validation
	Implementation
	C++ Language
	LightGBM

	Kernel Hazard Estimation Validation
	Preliminary Evaluation
	Workloads
	State-of-the-art algorithms
	Main Results
	Prediction Overhead Optimization
	Ablation Study

	Conclusion
	Summary
	Future Work
	Distributed HR-Cache
	Integration into Production Systems


	Bibliography
	Chapter 5 Supplement

